On the sphericity of scaling limits of random planar quadrangulations

被引:35
|
作者
Miermont, Gregory [1 ]
机构
[1] Univ Paris 06, F-75013 Paris, France
关键词
random planar maps; scaling limits; Gromov-Hausdorff convergence; spherical topology;
D O I
10.1214/ECP.v13-1368
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits of random planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence, that preserves topological properties of metric surfaces.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 50 条
  • [21] Scaling Limits of Planar Symplectic Ensembles
    Akemann, Gernot
    Byun, Sung-Soo
    Kang, Nam-Gyu
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [22] SCALING LIMITS FOR A RANDOM BOXES MODEL
    Aurzada, F.
    Schwinn, S.
    ADVANCES IN APPLIED PROBABILITY, 2019, 51 (03) : 773 - 801
  • [23] Scaling limits of random Polya trees
    Panagiotou, Konstantinos
    Stufler, Benedikt
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 801 - 820
  • [24] SCALING LIMITS FOR ASSOCIATED RANDOM MEASURES
    BURTON, R
    WAYMIRE, E
    ANNALS OF PROBABILITY, 1985, 13 (04): : 1267 - 1278
  • [25] Limits of the boundary of random planar maps
    Richier, Loic
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) : 789 - 827
  • [26] Limits of the boundary of random planar maps
    Loïc Richier
    Probability Theory and Related Fields, 2018, 172 : 789 - 827
  • [27] Scaling limits for planar aggregation with subcritical fluctuations
    Norris, James
    Silvestri, Vittoria
    Turner, Amanda
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 185 - 250
  • [28] Scaling limits for planar aggregation with subcritical fluctuations
    James Norris
    Vittoria Silvestri
    Amanda Turner
    Probability Theory and Related Fields, 2023, 185 : 185 - 250
  • [29] Uniform infinite planar quadrangulations with a boundary
    Curien, Nicolas
    Miermont, Gregory
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (01) : 30 - 58
  • [30] Scaling limits for the critical Fortuin-Kasteleyn model on a random planar map I: Cone times
    Gwynne, Ewain
    Mao, Cheng
    Sun, Xin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01): : 1 - 60