Backbone scaling limits for random walks on random critical trees

被引:0
|
作者
Ben Arous, Gerard [1 ]
Cabezas, Manuel [2 ]
Fribergh, Alexander [3 ]
机构
[1] New York Univ, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Pontificia Univ Catolica Chile, Ave Vicuna Mackenna 4860, Santiago, Chile
[3] Univ Montreal, DMS, Pavillon Andre Aisenstadt 2920,chemin Tour, Montreal, PQ H3T 1J4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Percolation; Random walk; INVASION PERCOLATION; INVARIANCE-PRINCIPLE; BROWNIAN-MOTION;
D O I
10.1214/23-AIHP1394
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of scaling limits for the projection on the backbone of the random walks on the Incipient Infinite Cluster and the Invasion Percolation Cluster on a regular tree. We treat these projected random walks as Randomly trapped random walks (as defined in ) and thus describe these scaling limits as spatially subordinated Brownian motions.
引用
收藏
页码:1814 / 1848
页数:35
相关论文
共 50 条