Scaling for random walks on Eden trees

被引:4
|
作者
Reis, FDAA
机构
[1] Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, Rio de Janeiro, Niterói, 24210-340, Campus da Praia Vermelha
关键词
D O I
10.1103/PhysRevE.54.R3079
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random walks are simulated on finite stages of construction of Eden trees in dimensions D=2 and 3, and it is shown that the mean-square displacement [R(N)(2)], of N-step walks and the mean number of distinct visited sites [S-N] obey finite-size scaling. Accurate estimates of the dimensions of the random walks D-w, are obtained and the relation [S-N]similar to N-DIDw/(logN)(alpha) is shown to hold in these fractals, with positive exponents alpha. Then the Alexander-Orbach scaling relation D-s=2D/D-w is satisfied, where D-s is the spectral dimension, contrary to previous proposals in these and other treelike structures.
引用
收藏
页码:R3079 / R3081
页数:3
相关论文
共 50 条
  • [1] Scaling for random walks on Eden trees
    [J]. Phys Rev E., 4-A pt A (R3079):
  • [2] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [3] SCALING LIMITS FOR SIMPLE RANDOM WALKS ON RANDOM ORDERED GRAPH TREES
    Croydon, D. A.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 528 - 558
  • [4] RANDOM-WALKS ON RANDOM TREES
    MOON, JW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A34 - &
  • [5] On the speed of random walks on random trees
    Konsowa, Mokhtar H.
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (20) : 2230 - 2236
  • [6] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689
  • [7] Scaling limits of loop-erased random walks and uniform spanning trees
    Oded Schramm
    [J]. Israel Journal of Mathematics, 2000, 118 : 221 - 288
  • [8] Scaling limits of loop-erased random walks and uniform spanning trees
    Schramm, O
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) : 221 - 288
  • [9] Random walks on complex trees
    Baronchelli, Andrea
    Catanzaro, Michele
    Pastor-Satorras, Romualdo
    [J]. PHYSICAL REVIEW E, 2008, 78 (01)
  • [10] Potentials of random walks on trees
    Dellacherie, Claude
    Martinez, Servet
    San Martin, Jaime
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 : 123 - 161