Scaling for random walks on Eden trees

被引:4
|
作者
Reis, FDAA
机构
[1] Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, Rio de Janeiro, Niterói, 24210-340, Campus da Praia Vermelha
关键词
D O I
10.1103/PhysRevE.54.R3079
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random walks are simulated on finite stages of construction of Eden trees in dimensions D=2 and 3, and it is shown that the mean-square displacement [R(N)(2)], of N-step walks and the mean number of distinct visited sites [S-N] obey finite-size scaling. Accurate estimates of the dimensions of the random walks D-w, are obtained and the relation [S-N]similar to N-DIDw/(logN)(alpha) is shown to hold in these fractals, with positive exponents alpha. Then the Alexander-Orbach scaling relation D-s=2D/D-w is satisfied, where D-s is the spectral dimension, contrary to previous proposals in these and other treelike structures.
引用
收藏
页码:R3079 / R3081
页数:3
相关论文
共 50 条
  • [11] Counting trees with random walks
    Iacobelli, Giulio
    Figueiredo, Daniel R.
    Barbosa, Valmir C.
    [J]. EXPOSITIONES MATHEMATICAE, 2019, 37 (01) : 96 - 102
  • [12] RANDOM-WALKS ON TREES
    SCHOTT, R
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1986, 214 : 225 - 237
  • [13] CENTERS FOR RANDOM WALKS ON TREES
    Beveridge, Andrew
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 300 - 318
  • [14] RANDOM WALKS ON INFINITE TREES
    Anandam, Victor
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (01): : 75 - 82
  • [15] RANDOM-WALKS ON TREES
    PEARCE, LH
    [J]. DISCRETE MATHEMATICS, 1980, 30 (03) : 269 - 276
  • [16] Scaling exponents of random walks in random sceneries
    Piau, D
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 100 : 3 - 25
  • [17] Fractal dimensions and random walks on random trees
    Konsowa, MH
    Oraby, TF
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 333 - 342
  • [18] Scaling random walks on arbitrary sets
    Harris, SC
    Williams, D
    Sibson, R
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 : 535 - 544
  • [19] Deterministic Random Walks on Regular Trees
    Cooper, Joshua
    Doerr, Benjamin
    Friedrich, Tobias
    Spencer, Joel
    [J]. PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 766 - +
  • [20] Random walks on trees and an inequality of means
    Takacs, C
    Takacs, R
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (03) : 701 - 714