Scaling limits of random Polya trees

被引:9
|
作者
Panagiotou, Konstantinos [1 ]
Stufler, Benedikt [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Math, Theresienstr 39, D-80333 Munich, Germany
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, 46 Allee Italie, F-69364 Lyon, France
关键词
Random trees; Scaling limits; Polya trees; GALTON-WATSON; GRAPHS;
D O I
10.1007/s00440-017-0770-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Polya trees are rooted trees considered up to symmetry. We establish the convergence of large uniform random Polya trees with arbitrary degree restrictions to Aldous' Continuum Random Tree with respect to the Gromov-Hausdorff metric. Our proof is short and elementary, and it is based on a novel decomposition: it shows that the global shape of a random Polya tree is essentially dictated by a large Galton-Watson tree that it contains. We also derive sub-Gaussian tail bounds for both the height and the width, which are optimal up to constant factors in the exponent.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 50 条
  • [31] Convex hulls of random walks and their scaling limits
    Wade, Andrew R.
    Xu, Chang
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4300 - 4320
  • [32] Variance asymptotics and scaling limits for random polytopes
    Calka, Pierre
    Yukich, J. E.
    [J]. ADVANCES IN MATHEMATICS, 2017, 304 : 1 - 55
  • [33] Large random planar maps and their scaling limits
    Le Gall, Jean-Francois
    [J]. EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 253 - 276
  • [34] Scaling Limits for Gradient Systems in Random Environment
    Patrícia Gonçalves
    Milton Jara
    [J]. Journal of Statistical Physics, 2008, 131 : 691 - 716
  • [35] Graph limits of random unlabelledk-trees
    Jin, Emma Yu
    Stufler, Benedikt
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 722 - 746
  • [36] Scaling limits of k-ary growing trees
    Haas, Benedicte
    Stephenson, Robin
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (04): : 1314 - 1341
  • [37] SCALING LIMITS OF RANDOM GRAPHS FROM SUBCRITICAL CLASSES
    Panagiotou, Konstantinos
    Stufler, Benedikt
    Weller, Kerstin
    [J]. ANNALS OF PROBABILITY, 2016, 44 (05): : 3291 - 3334
  • [38] SLE scaling limits for a Laplacian random growth model
    Higgs, Frankie
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1712 - 1739
  • [39] NOVEL SCALING LIMITS FOR CRITICAL INHOMOGENEOUS RANDOM GRAPHS
    Bhamidi, Shankar
    van der Hofstad, Remco
    van Leeuwaarden, Johan S. H.
    [J]. ANNALS OF PROBABILITY, 2012, 40 (06): : 2299 - 2361
  • [40] Asymptotics of random processes with immigration I: Scaling limits
    Iksanov, Alexander
    Marynych, Alexander
    Meiners, Matthias
    [J]. BERNOULLI, 2017, 23 (02) : 1233 - 1278