Tree limits and limits of random trees

被引:4
|
作者
Janson, Svante [1 ]
机构
[1] Uppsala Univ, Dept Math, POB 480, SE-75106 Uppsala, Sweden
来源
COMBINATORICS PROBABILITY & COMPUTING | 2021年 / 30卷 / 06期
关键词
GALTON-WATSON TREES; DISTANCES; THEOREMS; DEPTHS; SIZE;
D O I
10.1017/S0963548321000055
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the tree limits recently defined by Elek and Tardos. In particular, we find tree limits for many classes of random trees. We give general theorems for three classes of conditional Galton-Watson trees and simply generated trees, for split trees and generalized split trees (as defined here), and for trees defined by a continuous-time branching process. These general results include, for example, random labelled trees, ordered trees, random recursive trees, preferential attachment trees, and binary search trees.
引用
收藏
页码:849 / 893
页数:45
相关论文
共 50 条
  • [1] Limits of random trees
    Attila Deák
    [J]. Acta Mathematica Hungarica, 2013, 141 : 185 - 201
  • [2] Limits of random trees
    Deak, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) : 185 - 201
  • [3] Scaling limits of random Polya trees
    Panagiotou, Konstantinos
    Stufler, Benedikt
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 801 - 820
  • [4] Limits of Random Trees. II
    A. Deák
    [J]. Acta Mathematica Hungarica, 2015, 145 : 205 - 219
  • [5] Limits of Random Trees. II
    Deak, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 205 - 219
  • [6] Graph limits of random unlabelledk-trees
    Jin, Emma Yu
    Stufler, Benedikt
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 722 - 746
  • [7] Scaling limits of random Pólya trees
    Konstantinos Panagiotou
    Benedikt Stufler
    [J]. Probability Theory and Related Fields, 2018, 170 : 801 - 820
  • [8] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [9] Scaling limits for some random trees constructed inhomogeneously
    Ross, Nathan
    Wen, Yuting
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [10] SCHRODER'S PROBLEMS AND SCALING LIMITS OF RANDOM TREES
    Pitman, Jim
    Rizzolo, Douglas
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 6943 - 6969