Lattice Embeddings of Planar Point Sets

被引:0
|
作者
Michael Knopf
Jesse Milzman
Derek Smith
Dantong Zhu
Dara Zirlin
机构
[1] University of California,
[2] Berkeley,undefined
[3] University of Maryland,undefined
[4] Lafayette College,undefined
[5] Georgia Institute of Technology,undefined
[6] University of Illinois,undefined
[7] Urbana-Champaign,undefined
来源
关键词
Lattice embedding; Heronian triangle; -Cluster; Ring of integers; Maximal order; Imaginary quadratic extension; 52C10; 52C05; 11Z05; 11R11; 11R04;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer D, called the “characteristic” of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such that a congruent copy of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in Q(-D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-D})$$\end{document}. We generalize the work of Yiu and Fricke on embedding point sets in Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} by providing conditions that characterize when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in the lattice corresponding to O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}, the ring of integers in Q(-D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-D})$$\end{document}. In particular, we show that if the square of every ideal in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document} is principal and the distance between at least one pair of points in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is integral, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}. Moreover, if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is primitive, so that the squared distances between pairs of points are relatively prime, and O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document} is a principal ideal domain, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}.
引用
收藏
页码:693 / 710
页数:17
相关论文
共 50 条
  • [31] Note – On the Number of Triangulations of Planar Point Sets
    Raimund Seidel
    Combinatorica, 1998, 18 : 297 - 299
  • [32] FAST NEIGHBORHOOD SEARCH IN PLANAR POINT SETS
    CHETVERIKOV, D
    PATTERN RECOGNITION LETTERS, 1991, 12 (07) : 409 - 412
  • [33] On Point-Sets That Support Planar Graphs
    Dujmovic, Vida
    Evans, William
    Lazard, Sylvain
    Lenhart, William
    Liotta, Giuseppe
    Rappaport, David
    Wismath, Stephen
    GRAPH DRAWING, 2012, 7034 : 64 - +
  • [34] On point-sets that support planar graphs
    Dujmovic, V.
    Evans, W.
    Lazard, S.
    Lenhart, W.
    Liotta, G.
    Rappaport, D.
    Wismath, S.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (01): : 29 - 50
  • [35] Open caps and cups in planar point sets
    Valtr, Pavel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (04) : 565 - 576
  • [36] A Note on Universal Point Sets for Planar Graphs
    Scheucher, Manfred
    Schrezenmaier, Hendrik
    Steiner, Raphael
    GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 350 - 362
  • [37] Open Caps and Cups in Planar Point Sets
    Pavel Valtr
    Discrete & Computational Geometry, 2007, 37 : 565 - 576
  • [38] On the number of radial orderings of planar point sets
    1600, Discrete Mathematics and Theoretical Computer Science (16):
  • [39] Trapezoids and Deltoids in Wide Planar Point Sets
    Gy. Elekes
    Graphs and Combinatorics, 2019, 35 : 569 - 578
  • [40] Trapezoids and Deltoids in Wide Planar Point Sets
    Elekes, Gy.
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 569 - 578