Note – On the Number of Triangulations of Planar Point Sets

被引:0
|
作者
Raimund Seidel
机构
[1] FB Informatik,
[2] Universität der Saarlandes; Postfach 15 1150,undefined
[3] D-66041 Saarbrücken,undefined
[4] Germany; E-mail: seidel@cs.uni-sb.de,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
Planar Point;
D O I
暂无
中图分类号
学科分类号
摘要
points in the plane is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:297 / 299
页数:2
相关论文
共 50 条
  • [1] On the number of triangulations of planar point sets
    Seidel, R
    COMBINATORICA, 1998, 18 (02) : 297 - 299
  • [2] The number of triangulations on planar point sets
    Welzl, Emo
    GRAPH DRAWING, 2007, 4372 : 1 - 4
  • [3] A lower bound on the number of triangulations of planar point sets
    Aichholzer, O
    Hurtado, F
    Noy, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 29 (02): : 135 - 145
  • [4] Counting Triangulations of Planar Point Sets
    Sharir, Micha
    Sheffer, Adam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [5] Four-Connected Triangulations of Planar Point Sets
    Ajit Arvind Diwan
    Subir Kumar Ghosh
    Bodhayan Roy
    Discrete & Computational Geometry, 2015, 53 : 713 - 746
  • [6] Constrained independence system and triangulations of planar point sets
    Cheng, SW
    Xu, YF
    COMPUTING AND COMBINATORICS, 1995, 959 : 41 - 50
  • [7] Four-Connected Triangulations of Planar Point Sets
    Diwan, Ajit Arvind
    Ghosh, Subir Kumar
    Roy, Bodhayan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 713 - 746
  • [8] On the number of pseudo-triangulations of certain point sets
    Aichholzer, Oswin
    Orden, David
    Santos, Francisco
    Speckmann, Bettina
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 254 - 278
  • [9] A better upper bound on the number of triangulations of a planar point set
    Santos, F
    Seidel, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 102 (01) : 186 - 193
  • [10] A Note on Universal Point Sets for Planar Graphs
    Scheucher, Manfred
    Schrezenmaier, Hendrik
    Steiner, Raphael
    GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 350 - 362