A Note on Universal Point Sets for Planar Graphs

被引:3
|
作者
Scheucher, Manfred [1 ]
Schrezenmaier, Hendrik [1 ]
Steiner, Raphael [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
来源
关键词
Simultaneously embedded; Stacked triangulation; Order type; Boolean satisfiability (SAT); Integer programming (IP); DRAW;
D O I
10.1007/978-3-030-35802-0_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate which planar point sets allow simultaneous straight-line embeddings of all planar graphs on a fixed number of vertices. We first show that at least (1.293 - o(1))n points are required to find a straight-line drawing of each n-vertex planar graph (vertices are drawn as the given points); this improves the previous best constant 1.235 by Kurowski (2004). Our second main result is based on exhaustive computer search: We show that no set of 11 points exists, on which all planar 11-vertex graphs can be simultaneously drawn plane straight-line. This strengthens the result by Cardinal, Hoffmann, and Kusters (2015), that all planar graphs on n <= 10 vertices can be simultaneously drawn on particular n-universal sets of n points while there are no n-universal sets of size n for n >= 15. We also provide 49 planar 11-vertex graphs which cannot be simultaneously drawn on any set of 11 points. This, in fact, is another step towards a (negative) answer of the question, whether every two planar graphs can be drawn simultaneously - a question raised by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw, and Mitchell (2007).
引用
收藏
页码:350 / 362
页数:13
相关论文
共 50 条
  • [1] A note on universal point sets for planar graphs
    Scheucher, Manfred
    Schrezenmaier, Hendrik
    Steiner, Raphael
    [J]. Journal of Graph Algorithms and Applications, 2020, 24 (03) : 247 - 267
  • [2] Universal Point Subsets for Planar Graphs
    Angelini, Patrizio
    Binucci, Carla
    Evans, William
    Hurtado, Ferran
    Liotta, Giuseppe
    Mchedlidze, Tamara
    Meijer, Henk
    Okamoto, Yoshio
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 423 - 432
  • [3] On Point-Sets That Support Planar Graphs
    Dujmovic, Vida
    Evans, William
    Lazard, Sylvain
    Lenhart, William
    Liotta, Giuseppe
    Rappaport, David
    Wismath, Stephen
    [J]. GRAPH DRAWING, 2012, 7034 : 64 - +
  • [4] On point-sets that support planar graphs
    Dujmovic, V.
    Evans, W.
    Lazard, S.
    Lenhart, W.
    Liotta, G.
    Rappaport, D.
    Wismath, S.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (01): : 29 - 50
  • [5] Note – On the Number of Triangulations of Planar Point Sets
    Raimund Seidel
    [J]. Combinatorica, 1998, 18 : 297 - 299
  • [6] Universal point sets for planar three-trees
    Fulek, Radoslav
    Toth, Csaba D.
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 (101-112) : 101 - 112
  • [7] Small Universal Point Sets for k-Outerplanar Graphs
    Patrizio Angelini
    Till Bruckdorfer
    Giuseppe Di Battista
    Michael Kaufmann
    Tamara Mchedlidze
    Vincenzo Roselli
    Claudio Squarcella
    [J]. Discrete & Computational Geometry, 2018, 60 : 430 - 470
  • [8] Small Universal Point Sets for k-Outerplanar Graphs
    Angelini, Patrizio
    Bruckdorfer, Till
    Di Battista, Giuseppe
    Kaufmann, Michael
    Mchedlidze, Tamara
    Roselli, Vincenzo
    Squarcella, Claudio
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (02) : 430 - 470
  • [9] Small Point Sets for Simply-Nested Planar Graphs
    Angelini, Patrizio
    Di Battista, Giuseppe
    Kaufmann, Michael
    Mchedlidze, Tamara
    Roselli, Vincenzo
    Squarcella, Claudio
    [J]. GRAPH DRAWING, 2012, 7034 : 75 - +
  • [10] A note on a QPTAS for maximum weight triangulation of planar point sets
    Levcopoulos, Christos
    Lingas, Andrzej
    [J]. INFORMATION PROCESSING LETTERS, 2014, 114 (08) : 414 - 416