A Note on Universal Point Sets for Planar Graphs

被引:3
|
作者
Scheucher, Manfred [1 ]
Schrezenmaier, Hendrik [1 ]
Steiner, Raphael [1 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
来源
关键词
Simultaneously embedded; Stacked triangulation; Order type; Boolean satisfiability (SAT); Integer programming (IP); DRAW;
D O I
10.1007/978-3-030-35802-0_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate which planar point sets allow simultaneous straight-line embeddings of all planar graphs on a fixed number of vertices. We first show that at least (1.293 - o(1))n points are required to find a straight-line drawing of each n-vertex planar graph (vertices are drawn as the given points); this improves the previous best constant 1.235 by Kurowski (2004). Our second main result is based on exhaustive computer search: We show that no set of 11 points exists, on which all planar 11-vertex graphs can be simultaneously drawn plane straight-line. This strengthens the result by Cardinal, Hoffmann, and Kusters (2015), that all planar graphs on n <= 10 vertices can be simultaneously drawn on particular n-universal sets of n points while there are no n-universal sets of size n for n >= 15. We also provide 49 planar 11-vertex graphs which cannot be simultaneously drawn on any set of 11 points. This, in fact, is another step towards a (negative) answer of the question, whether every two planar graphs can be drawn simultaneously - a question raised by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw, and Mitchell (2007).
引用
收藏
页码:350 / 362
页数:13
相关论文
共 50 条
  • [31] Small universal graphs for bounded-degree planar graphs
    Capalbo, M
    [J]. COMBINATORICA, 2002, 22 (03) : 345 - 359
  • [32] Small Universal Graphs for Bounded-Degree Planar Graphs
    Michael Capalbo
    [J]. Combinatorica, 2002, 22 : 345 - 359
  • [33] Universal Slope Sets for Upward Planar Drawings
    Michael A. Bekos
    Emilio Di Giacomo
    Walter Didimo
    Giuseppe Liotta
    Fabrizio Montecchiani
    [J]. Algorithmica, 2022, 84 : 2556 - 2580
  • [34] Universal Slope Sets for Upward Planar Drawings
    Bekos, Michael A.
    Di Giacomo, Emilio
    Didimo, Walter
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2018, 2018, 11282 : 77 - 91
  • [35] Universal Slope Sets for Upward Planar Drawings
    Bekos, Michael A.
    Di Giacomo, Emilio
    Didimo, Walter
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    [J]. ALGORITHMICA, 2022, 84 (09) : 2556 - 2580
  • [36] Universal Planar Graphs for the Topological Minor Relation
    Lehner, Florian
    [J]. COMBINATORICA, 2024, 44 (01) : 209 - 230
  • [37] Universal Planar Graphs for the Topological Minor Relation
    Florian Lehner
    [J]. Combinatorica, 2024, 44 : 209 - 230
  • [38] κ-Sets of convex inclusion chains of planar point sets
    El Oraiby, Wael
    Schmitt, Dominique
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 339 - 350
  • [39] Connecting face hitting sets in planar graphs
    Schweitzer, Pascal
    Schweitzer, Patrick
    [J]. INFORMATION PROCESSING LETTERS, 2010, 111 (01) : 11 - 15
  • [40] On the Number of -Dominating Independent Sets in Planar Graphs
    Taletskii, D.S.
    [J]. Journal of Applied and Industrial Mathematics, 2024, 18 (01) : 167 - 178