On point-sets that support planar graphs

被引:6
|
作者
Dujmovic, V. [2 ]
Evans, W. [3 ]
Lazard, S. [4 ]
Lenhart, W. [5 ]
Liotta, G. [6 ]
Rappaport, D. [7 ]
Wismath, S. [1 ]
机构
[1] Univ Lethbridge, Lethbridge, AB T1K 3M4, Canada
[2] Carleton Univ, Ottawa, ON K1S 5B6, Canada
[3] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
[4] INRIA Nancy, LORIA, Nancy, France
[5] Roger Williams Univ, Bristol, RI 02809 USA
[6] Univ Perugia, I-06100 Perugia, Italy
[7] Queens Univ, Kingston, ON K7L 3N6, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Universal point-sets; Planar graph drawing; DRAWINGS;
D O I
10.1016/j.comgeo.2012.03.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A universal point-set supports a crossing-free drawing of any planar graph. For a planar graph with n vertices, if bends on edges of the drawing are permitted, universal point-sets of size n are known, but only if the bend points are in arbitrary positions. If the locations of the bend points must also be specified as part of the point-set, we prove that any planar graph with n vertices can be drawn on a universal set S of O(n(2) / logn) points with at most one bend per edge and with the vertices and the bend points in S. If two bends per edge are allowed, we show that 0(n logn) points are sufficient, and if three bends per edge are allowed, 0(n) points are sufficient. When no bends on edges are permitted, no universal point-set of size o(n(2)) is known for the class of planar graphs. We show that a set of n points in balanced biconvex position supports the class of maximum-degree-3 series-parallel lattices. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 50
页数:22
相关论文
共 50 条
  • [1] On Point-Sets That Support Planar Graphs
    Dujmovic, Vida
    Evans, William
    Lazard, Sylvain
    Lenhart, William
    Liotta, Giuseppe
    Rappaport, David
    Wismath, Stephen
    [J]. GRAPH DRAWING, 2012, 7034 : 64 - +
  • [2] A TIGHT PACKAGE WRAPPING FOR PLANAR POINT-SETS
    WONG, IWS
    SWAYNE, DA
    LAM, DCL
    [J]. COMPUTERS & GRAPHICS, 1992, 16 (03) : 265 - 271
  • [3] Universal groups for point-sets and tilings
    Kellendonk, J
    Lawson, MV
    [J]. JOURNAL OF ALGEBRA, 2004, 276 (02) : 462 - 492
  • [4] A Note on Universal Point Sets for Planar Graphs
    Scheucher, Manfred
    Schrezenmaier, Hendrik
    Steiner, Raphael
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 350 - 362
  • [5] A note on universal point sets for planar graphs
    Scheucher, Manfred
    Schrezenmaier, Hendrik
    Steiner, Raphael
    [J]. Journal of Graph Algorithms and Applications, 2020, 24 (03) : 247 - 267
  • [6] Self-projective point-sets
    Bottema, O
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1940, 43 (1/5): : 591 - 598
  • [7] A class of point-sets with few k-sets
    Alt, H
    Felsner, S
    Hurtado, F
    Noy, M
    Welzl, E
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (02): : 95 - 101
  • [8] On large equilateral point-sets in normed spaces
    Bernardo González Merino
    [J]. Archiv der Mathematik, 2020, 114 : 553 - 559
  • [9] Efficient approximation algorithms for clustering point-sets
    Xu, Guang
    Xu, Jinhui
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (01): : 59 - 66
  • [10] Small Point-Sets Supporting Graph Stories
    Di Battista, Giuseppe
    Didimo, Walter
    Grilli, Luca
    Grosso, Fabrizio
    Ortali, Giacomo
    Patrignani, Maurizio
    Tappini, Alessandra
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 289 - 303