A class of point-sets with few k-sets

被引:2
|
作者
Alt, H
Felsner, S
Hurtado, F
Noy, M
Welzl, E
机构
[1] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
[2] Univ Politecn Catalunya, Dept Matemat Aplicada 2, E-08028 Barcelona, Spain
[3] ETH Zentrum, CH-8092 Zurich, Switzerland
来源
关键词
convex curve; k-set; Lovasz' procedure;
D O I
10.1016/S0925-7721(00)00006-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-set of a finite set S of points in the plane is a subset of cardinality k that can be separated from the rest by a straight line. The question of how many k-sets a set of n points can contain is a long-standing open problem where a lower bound of Omega (n log k) and an upper bound of O(nk(1/3)) are known today. Under certain restrictions on the set S, for example, if all points lie on a convex curve, the number of k-sets is linear. We generalize this observation by showing that if the points of S lie on a constant number of convex curves, the number of k-sets remains linear in n. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [1] Point Sets with Many k-Sets
    G. Tóth
    [J]. Discrete & Computational Geometry, 2001, 26 : 187 - 194
  • [2] ON K-SETS IN THE PLANE
    PECK, GW
    [J]. DISCRETE MATHEMATICS, 1985, 56 (01) : 73 - 74
  • [3] MORE ON K-SETS OF FINITE SETS IN THE PLANE
    WELZL, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) : 95 - 100
  • [4] k-sets and k-facets
    Wagner, Uli
    [J]. SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 443 - 513
  • [5] K-SETS AND RANDOM HULLS
    SHARIR, M
    [J]. COMBINATORICA, 1993, 13 (04) : 483 - 495
  • [6] Universal groups for point-sets and tilings
    Kellendonk, J
    Lawson, MV
    [J]. JOURNAL OF ALGEBRA, 2004, 276 (02) : 462 - 492
  • [7] On Point-Sets That Support Planar Graphs
    Dujmovic, Vida
    Evans, William
    Lazard, Sylvain
    Lenhart, William
    Liotta, Giuseppe
    Rappaport, David
    Wismath, Stephen
    [J]. GRAPH DRAWING, 2012, 7034 : 64 - +
  • [8] ON THE EXPECTED NUMBER OF K-SETS
    BARANY, I
    STEIGER, W
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (03) : 243 - 263
  • [9] k-Sets in Four Dimensions
    Jiri Matousek
    Micha Sharir
    Shakhar Smorodinsky
    Uli Wagner
    [J]. Discrete & Computational Geometry, 2006, 35 : 177 - 191
  • [10] Forbidden K-sets in the plane
    Perles, Micha A.
    Pinchasi, Rom
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 385 - 395