Lattice Embeddings of Planar Point Sets

被引:0
|
作者
Michael Knopf
Jesse Milzman
Derek Smith
Dantong Zhu
Dara Zirlin
机构
[1] University of California,
[2] Berkeley,undefined
[3] University of Maryland,undefined
[4] Lafayette College,undefined
[5] Georgia Institute of Technology,undefined
[6] University of Illinois,undefined
[7] Urbana-Champaign,undefined
来源
关键词
Lattice embedding; Heronian triangle; -Cluster; Ring of integers; Maximal order; Imaginary quadratic extension; 52C10; 52C05; 11Z05; 11R11; 11R04;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer D, called the “characteristic” of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such that a congruent copy of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in Q(-D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-D})$$\end{document}. We generalize the work of Yiu and Fricke on embedding point sets in Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} by providing conditions that characterize when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in the lattice corresponding to O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}, the ring of integers in Q(-D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-D})$$\end{document}. In particular, we show that if the square of every ideal in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document} is principal and the distance between at least one pair of points in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is integral, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}. Moreover, if M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is primitive, so that the squared distances between pairs of points are relatively prime, and O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document} is a principal ideal domain, then M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} embeds in O-D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_{-D}$$\end{document}.
引用
收藏
页码:693 / 710
页数:17
相关论文
共 50 条
  • [21] An historical overview of lattice point sets
    Wang, Y
    Hickernell, FJ
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 158 - 167
  • [22] Generalized good lattice point sets
    Zong-Feng Qi
    Xue-Ru Zhang
    Yong-Dao Zhou
    Computational Statistics, 2018, 33 : 887 - 901
  • [23] Generalized good lattice point sets
    Qi, Zong-Feng
    Zhang, Xue-Ru
    Zhou, Yong-Dao
    COMPUTATIONAL STATISTICS, 2018, 33 (02) : 887 - 901
  • [24] Convex sets with lattice point constraints
    Awyong, PW
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 161 - 163
  • [25] Distance sets of well-distributed planar point sets
    Iosevich, A
    Laba, I
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 243 - 250
  • [26] Distance Sets of Well-Distributed Planar Point Sets
    A. Iosevich
    I. Laba
    Discrete & Computational Geometry, 2004, 31 : 243 - 250
  • [27] The Complexity of Low-Distortion Embeddings Between Point Sets
    Papadimitriou, Christos
    Safra, Shmuel
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 112 - 118
  • [28] On Hybrid Point Sets Stemming from Halton-Type Hammersley Point Sets and Polynomial Lattice Point Sets
    Hofer, Roswitha
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 251 - 269
  • [29] Empty Convex Hexagons in Planar Point Sets
    Tobias Gerken
    Discrete & Computational Geometry, 2008, 39 : 239 - 272
  • [30] Empty convex hexagons in planar point sets
    Gerken, Tobias
    DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) : 239 - 272