Empty convex hexagons in planar point sets

被引:61
|
作者
Gerken, Tobias [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
Erdos-Szekeres problem; Ramsey theory; convex polygons and polyhedra; empty hexagon problem;
D O I
10.1007/s00454-007-9018-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Erdos asked whether every sufficiently large set of points in general position in the plane contains six points that form a convex hexagon without any points from the set in its interior. Such a configuration is called an empty convex hexagon. In this paper, we answer the question in the affirmative. We show that every set that contains the vertex set of a convex 9-gon also contains an empty convex hexagon.
引用
收藏
页码:239 / 272
页数:34
相关论文
共 50 条
  • [1] Empty Convex Hexagons in Planar Point Sets
    Tobias Gerken
    Discrete & Computational Geometry, 2008, 39 : 239 - 272
  • [2] Disjoint empty convex pentagons in planar point sets
    Bhattacharya, Bhaswar B.
    Das, Sandip
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 73 - 86
  • [3] Disjoint empty convex pentagons in planar point sets
    Bhaswar B. Bhattacharya
    Sandip Das
    Periodica Mathematica Hungarica, 2013, 66 : 73 - 86
  • [4] Planar point sets with a small number of empty convex polygons
    Bárány, I
    Valtr, P
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2004, 41 (02) : 243 - 266
  • [5] Planar sets with few empty convex polygons
    Dumitrescu, A
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2000, 36 (1-2) : 93 - 109
  • [6] On empty convex polygons in a planar point set
    Pinchasi, R
    Radoicic, R
    Sharir, M
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) : 385 - 419
  • [7] κ-Sets of convex inclusion chains of planar point sets
    El Oraiby, Wael
    Schmitt, Dominique
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 339 - 350
  • [8] Partitioning a planar point set into empty convex polygons
    Ding, R
    Hosono, K
    Urabe, M
    Xu, CQ
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2002, 2866 : 129 - 134
  • [9] Almost Empty Monochromatic Quadrilaterals in Planar Point Sets
    Liu, L.
    Zhang, Y.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 415 - 429
  • [10] COUNTING CONVEX POLYGONS IN PLANAR POINT SETS
    MITCHELL, JSB
    ROTE, G
    SUNDARAM, G
    WOEGINGER, G
    INFORMATION PROCESSING LETTERS, 1995, 56 (01) : 45 - 49