COUNTING CONVEX POLYGONS IN PLANAR POINT SETS

被引:10
|
作者
MITCHELL, JSB
ROTE, G
SUNDARAM, G
WOEGINGER, G
机构
[1] GRAZ TECH UNIV,INST MATH,A-8010 GRAZ,AUSTRIA
[2] ENVIRONM SYST RES INST,REDLANDS,CA 92373
基金
美国国家科学基金会;
关键词
COMPUTATIONAL GEOMETRY; CONVEXITY; COMBINATORICS; DYNAMIC PROGRAMMING;
D O I
10.1016/0020-0190(95)00130-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set S of n points in the plane, we compute in time O(n(3)) the total number of convex polygons whose vertices are a subset of S. We give an O(m . n(3)) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3,..., m; previously known bounds were exponential (O(n([k/2]))). We also compute the number of empty convex polygons (resp., k-gons, k less than or equal to m) with vertices in S in time O(n(3)) (resp., O(m . n(3))).
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [2] Planar point sets with a small number of empty convex polygons
    Bárány, I
    Valtr, P
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2004, 41 (02) : 243 - 266
  • [3] COUNTING CONVEX KAPPA-GONS IN PLANAR POINT SETS
    ROTE, G
    WOEGINGER, G
    [J]. INFORMATION PROCESSING LETTERS, 1992, 41 (04) : 191 - 194
  • [4] Planar sets with few empty convex polygons
    Dumitrescu, A
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2000, 36 (1-2) : 93 - 109
  • [5] On empty convex polygons in a planar point set
    Pinchasi, R
    Radoicic, R
    Sharir, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) : 385 - 419
  • [6] Counting Triangulations of Planar Point Sets
    Sharir, Micha
    Sheffer, Adam
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [7] Partitioning a planar point set into empty convex polygons
    Ding, R
    Hosono, K
    Urabe, M
    Xu, CQ
    [J]. DISCRETE AND COMPUTATIONAL GEOMETRY, 2002, 2866 : 129 - 134
  • [8] On Weighted Sums of Numbers of Convex Polygons in Point Sets
    Clemens Huemer
    Deborah Oliveros
    Pablo Pérez-Lantero
    Ferran Torra
    Birgit Vogtenhuber
    [J]. Discrete & Computational Geometry, 2022, 68 : 448 - 476
  • [9] On Weighted Sums of Numbers of Convex Polygons in Point Sets
    Huemer, Clemens
    Oliveros, Deborah
    Perez-Lantero, Pablo
    Torra, Ferran
    Vogtenhuber, Birgit
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (02) : 448 - 476
  • [10] κ-Sets of convex inclusion chains of planar point sets
    El Oraiby, Wael
    Schmitt, Dominique
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 339 - 350