On Weighted Sums of Numbers of Convex Polygons in Point Sets

被引:0
|
作者
Clemens Huemer
Deborah Oliveros
Pablo Pérez-Lantero
Ferran Torra
Birgit Vogtenhuber
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtiques
[2] Universidad Nacional Autónoma de México,Instituto de Matemáticas Unidad Juriquilla
[3] Universidad de Santiago de Chile (USACH),Facultad de Ciencia, Departamento de Matemática y Ciencia de la Computación
[4] Graz University of Technology,Institute of Software Technology
来源
关键词
Erdős–Szekeres type problems; Empty convex polygons; Planar point sets; 52C10; 52C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a set of n points in general position in the plane, and let Xk,ℓ(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{k,\ell }(S)$$\end{document} be the number of convex k-gons with vertices in S that have exactly ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} points of S in their interior. We prove several equalities for the numbers Xk,ℓ(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{k,\ell }(S)$$\end{document}. This problem is related to the Erdős–Szekeres theorem. Some of the obtained equations also extend known equations for the numbers of empty convex polygons to polygons with interior points. Analogous results for higher dimension are shown as well.
引用
收藏
页码:448 / 476
页数:28
相关论文
共 50 条
  • [1] On Weighted Sums of Numbers of Convex Polygons in Point Sets
    Huemer, Clemens
    Oliveros, Deborah
    Perez-Lantero, Pablo
    Torra, Ferran
    Vogtenhuber, Birgit
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (02) : 448 - 476
  • [2] COUNTING CONVEX POLYGONS IN PLANAR POINT SETS
    MITCHELL, JSB
    ROTE, G
    SUNDARAM, G
    WOEGINGER, G
    [J]. INFORMATION PROCESSING LETTERS, 1995, 56 (01) : 45 - 49
  • [3] Weighted covering numbers of convex sets
    Artstein-Avidan, S.
    Raz, O.
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (01) : 730 - 744
  • [4] Monotonic Polygons and Paths in Weighted Point Sets
    Sakai, Toshinori
    Urrutia, Jorge
    [J]. COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 164 - +
  • [5] Convergence of Weighted Sums and Strong Law of Large Numbers for Convex Compact Integrable Random Sets and Fuzzy Random Sets
    Nguyen Van Quang
    Hoang Thi Duyen
    [J]. JOURNAL OF CONVEX ANALYSIS, 2017, 24 (01) : 213 - 238
  • [6] Point Sets with Small Integer Coordinates and No Large Convex Polygons
    Duque, Frank
    Fabila-Monroy, Ruy
    Hidalgo-Toscano, Carlos
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (02) : 461 - 476
  • [7] Point Sets with Small Integer Coordinates and No Large Convex Polygons
    Frank Duque
    Ruy Fabila-Monroy
    Carlos Hidalgo-Toscano
    [J]. Discrete & Computational Geometry, 2018, 59 : 461 - 476
  • [8] Planar point sets with a small number of empty convex polygons
    Bárány, I
    Valtr, P
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2004, 41 (02) : 243 - 266
  • [9] Pebble Sets in Convex Polygons
    Kevin Iga
    Randall Maddox
    [J]. Discrete & Computational Geometry, 2007, 38 : 680 - 700
  • [10] Pebble sets in convex polygons
    Iga, Kevin
    Maddox, Randall
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (04) : 680 - 700