Pebble Sets in Convex Polygons

被引:0
|
作者
Kevin Iga
Randall Maddox
机构
[1] Pepperdine University,Natural Science Division
来源
关键词
Convex Hull; Half Plane; Unique Point; Discrete Comput Geom; Incident Edge;
D O I
暂无
中图分类号
学科分类号
摘要
Lukács and András posed the problem of showing the existence of a set of n−2 points in the interior of a convex n-gon so that the interior of every triangle determined by three vertices of the polygon contains a unique point of S. Such sets have been called pebble sets by De Loera, Peterson, and Su. We seek to characterize all such sets for any given convex polygon in the plane.
引用
下载
收藏
页码:680 / 700
页数:20
相关论文
共 50 条
  • [1] Pebble sets in convex polygons
    Iga, Kevin
    Maddox, Randall
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (04) : 680 - 700
  • [2] EMPTY CONVEX POLYGONS IN ALMOST CONVEX SETS
    Valtr, Pavel
    Lippner, Gabor
    Karolyi, Gyula
    PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (02) : 121 - 127
  • [3] Empty convex polygons in almost convex sets
    Pavel Valtr
    Gábor Lippner
    Gyula Károlyi
    Periodica Mathematica Hungarica, 2007, 55 : 121 - 127
  • [4] DECOMPOSITION OF POLYGONS INTO CONVEX-SETS
    SCHACHTER, B
    IEEE TRANSACTIONS ON COMPUTERS, 1978, 27 (11) : 1078 - 1082
  • [5] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88
  • [6] Planar sets with few empty convex polygons
    Dumitrescu, A
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2000, 36 (1-2) : 93 - 109
  • [7] COVERING CONVEX-SETS WITH NONOVERLAPPING POLYGONS
    EDELSBRUNNER, H
    ROBISON, AD
    SHEN, XJ
    DISCRETE MATHEMATICS, 1990, 81 (02) : 153 - 164
  • [8] COUNTING CONVEX POLYGONS IN PLANAR POINT SETS
    MITCHELL, JSB
    ROTE, G
    SUNDARAM, G
    WOEGINGER, G
    INFORMATION PROCESSING LETTERS, 1995, 56 (01) : 45 - 49
  • [9] Strongly normal sets of convex polygons or polyhedra
    Saha, PK
    Rosenfeld, A
    PATTERN RECOGNITION LETTERS, 1998, 19 (12) : 1119 - 1124
  • [10] AN ISOPERIMETRIC INEQUALITY FOR CONVEX POLYGONS AND CONVEX-SETS WITH THE SAME SYMMETRALS
    LONGINETTI, M
    GEOMETRIAE DEDICATA, 1986, 20 (01) : 27 - 41