Empty convex hexagons in planar point sets

被引:61
|
作者
Gerken, Tobias [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
Erdos-Szekeres problem; Ramsey theory; convex polygons and polyhedra; empty hexagon problem;
D O I
10.1007/s00454-007-9018-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Erdos asked whether every sufficiently large set of points in general position in the plane contains six points that form a convex hexagon without any points from the set in its interior. Such a configuration is called an empty convex hexagon. In this paper, we answer the question in the affirmative. We show that every set that contains the vertex set of a convex 9-gon also contains an empty convex hexagon.
引用
收藏
页码:239 / 272
页数:34
相关论文
共 50 条
  • [21] On Almost Empty Monochromatic Triangles and Convex Quadrilaterals in Colored Point Sets
    Cravioto-Lagos, Jorge
    Corinto Gonzalez-Martinez, Alejandro
    Sakai, Toshinori
    Urrutia, Jorge
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1475 - 1493
  • [22] Empty convex polygons in almost convex sets
    Pavel Valtr
    Gábor Lippner
    Gyula Károlyi
    Periodica Mathematica Hungarica, 2007, 55 : 121 - 127
  • [23] EMPTY CONVEX POLYGONS IN ALMOST CONVEX SETS
    Valtr, Pavel
    Lippner, Gabor
    Karolyi, Gyula
    PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (02) : 121 - 127
  • [24] CONVEX INDEPENDENT SETS AND 7-HOLES IN RESTRICTED PLANAR POINT SETS
    VALTR, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (02) : 135 - 152
  • [25] On empty hexagons
    Valtr, Pavel
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 433 - 441
  • [26] New inequalities for planar convex sets with lattice point constraints
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 391 - 396
  • [27] ON PLANAR CONVEX-SETS CONTAINING ONE LATTICE POINT
    SCOTT, PR
    QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (141): : 105 - 111
  • [28] COUNTING CONVEX KAPPA-GONS IN PLANAR POINT SETS
    ROTE, G
    WOEGINGER, G
    INFORMATION PROCESSING LETTERS, 1992, 41 (04) : 191 - 194
  • [29] Some inequalities for planar convex sets containing one lattice point
    Hernandez, MA
    Gomis, SS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (01) : 159 - 166
  • [30] Linear-size planar Manhattan network for convex point sets
    Jana, Satyabrata
    Maheshwari, Anil
    Roy, Sasanka
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2022, 100