Empty convex hexagons in planar point sets

被引:61
|
作者
Gerken, Tobias [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
Erdos-Szekeres problem; Ramsey theory; convex polygons and polyhedra; empty hexagon problem;
D O I
10.1007/s00454-007-9018-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Erdos asked whether every sufficiently large set of points in general position in the plane contains six points that form a convex hexagon without any points from the set in its interior. Such a configuration is called an empty convex hexagon. In this paper, we answer the question in the affirmative. We show that every set that contains the vertex set of a convex 9-gon also contains an empty convex hexagon.
引用
收藏
页码:239 / 272
页数:34
相关论文
共 50 条
  • [31] Almost empty hexagons
    V. A. Koshelev
    Journal of Mathematical Sciences, 2010, 164 (1) : 60 - 81
  • [32] TRANSLATIONS OF PLANAR CONVEX SETS
    NISHIURA, T
    SCHNITZE.F
    ARCHIV DER MATHEMATIK, 1971, 22 (01) : 103 - &
  • [33] Extremal convex planar sets
    Ting, L
    Keller, JB
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 33 (03) : 369 - 393
  • [34] Large empty convex polygons in k-convex sets
    Gábor Kun
    Gábor Lippner
    Periodica Mathematica Hungarica, 2003, 46 (1) : 81 - 88
  • [35] Extremal Convex Planar Sets
    Lu Ting
    Joseph B. Keller
    Discrete & Computational Geometry, 2005, 33 : 369 - 393
  • [36] SETS WITH NO EMPTY CONVEX 7-GONS
    HORTON, JD
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (04): : 482 - 484
  • [37] AREA, WIDTH AND DIAMETER OF PLANAR CONVEX-SETS WITH LATTICE POINT CONSTRAINTS
    SCOTT, PR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (04): : 444 - 448
  • [38] Width-diameter relations for planar convex sets with lattice point constraints
    Awyong, PW
    Scott, PR
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) : 469 - 478
  • [39] EMPTY PENTAGONS IN POINT SETS WITH COLLINEARITIES
    Barat, Janos
    Dujmovic, Vida
    Joret, Gwenael
    Payne, Michael S.
    Scharf, Ludmila
    Schymura, Daria
    Valtr, Pavel
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 198 - 209
  • [40] On the boundary of the union of planar convex sets
    Pach, J
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) : 321 - 328