Transformations that minimize the Gini index of a random variable and applications

被引:0
|
作者
Michael McAsey
Libin Mou
机构
[1] Bradley University,Department of Mathematics
来源
关键词
Gini index; Minimization; Equitable taxation;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous or discrete random variable with values in [0,M] and consider all functions (here called transformations) q:[0,M]→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q:[0,M]\to [0,\infty )$\end{document} that are increasing and have given bounded rates B≤q(v)−q(u)v−u≤A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \le \frac {q(v)-q(u)}{v-u} \le A$\end{document} for u < v. We prove that among such transformations, there is a transformation q that minimizes the Gini index of q(X), and such a q can be chosen as piecewise linear with only two rates, namely A and B. In the motivation for the study, X represents the incomes of a population. Our results imply that among all such tax policies with fixed allowable minimum and maximum tax rates, there is a tax policy that minimizes the Gini index of the disposable incomes of the population and such a tax policy has only two brackets with the given minimum and maximum rates.
引用
收藏
页码:483 / 502
页数:19
相关论文
共 50 条
  • [21] Computing the Gini index: A note
    Furman, Edward
    Kye, Yisub
    Su, Jianxi
    ECONOMICS LETTERS, 2019, 185
  • [22] Variable Selection Using Mean Decrease Accuracy And Mean Decrease Gini Based on Random Forest
    Han, Hong
    Guo, Xiaoling
    Yu, Hua
    PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, : 219 - 224
  • [23] The robustness of the generalized Gini index
    S. Settepanella
    A. Terni
    M. Franciosi
    L. Li
    Decisions in Economics and Finance, 2022, 45 : 521 - 539
  • [24] Shrinkage estimation of Gini index
    Ghori, R.
    Ahmed, S. E.
    Hussein, A. A.
    CONTRIBUTIONS TO PROBABILITY AND STATISTICS: APPLICATIONS AND CHALLENGES, 2006, : 234 - +
  • [25] Reliable inference for the Gini index
    Davidson, Russell
    JOURNAL OF ECONOMETRICS, 2009, 150 (01) : 30 - 40
  • [26] A characterization of the Gini segregation index
    Carmen Puerta
    Ana Urrutia
    Social Choice and Welfare, 2016, 47 : 519 - 529
  • [27] THE BRADFORD DISTRIBUTION AND THE GINI INDEX
    BURRELL, QL
    SCIENTOMETRICS, 1991, 21 (02) : 181 - 194
  • [28] Practical modified Gini index
    Malul, Miki
    Shapira, Daniel
    Shoham, Amir
    APPLIED ECONOMICS LETTERS, 2013, 20 (04) : 324 - 327
  • [29] The robustness of the generalized Gini index
    Settepanella, S.
    Terni, A.
    Franciosi, M.
    Li, L.
    DECISIONS IN ECONOMICS AND FINANCE, 2022, 45 (02) : 521 - 539
  • [30] ON THONS AXIOMATIZATION OF THE GINI INDEX
    TRANNOY, A
    MATHEMATICAL SOCIAL SCIENCES, 1986, 11 (02) : 191 - 194