Transformations that minimize the Gini index of a random variable and applications

被引:0
|
作者
Michael McAsey
Libin Mou
机构
[1] Bradley University,Department of Mathematics
来源
关键词
Gini index; Minimization; Equitable taxation;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous or discrete random variable with values in [0,M] and consider all functions (here called transformations) q:[0,M]→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q:[0,M]\to [0,\infty )$\end{document} that are increasing and have given bounded rates B≤q(v)−q(u)v−u≤A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \le \frac {q(v)-q(u)}{v-u} \le A$\end{document} for u < v. We prove that among such transformations, there is a transformation q that minimizes the Gini index of q(X), and such a q can be chosen as piecewise linear with only two rates, namely A and B. In the motivation for the study, X represents the incomes of a population. Our results imply that among all such tax policies with fixed allowable minimum and maximum tax rates, there is a tax policy that minimizes the Gini index of the disposable incomes of the population and such a tax policy has only two brackets with the given minimum and maximum rates.
引用
收藏
页码:483 / 502
页数:19
相关论文
共 50 条
  • [31] Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach
    Dunne, Robert
    Reguant, Roc
    Ramarao-Milne, Priya
    Szul, Piotr
    Sng, Letitia M. F.
    Lundberg, Mischa
    Twine, Natalie A.
    Bauer, Denis C.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 4354 - 4360
  • [32] INSURANCE RATEMAKING AND A GINI INDEX
    Frees, Edward W.
    Meyers, Glenn
    Cummings, A. David
    JOURNAL OF RISK AND INSURANCE, 2014, 81 (02) : 335 - 366
  • [33] ON AN EXTENSION OF THE GINI INEQUALITY INDEX
    YITZHAKI, S
    INTERNATIONAL ECONOMIC REVIEW, 1983, 24 (03) : 617 - 628
  • [34] A NOTE ON CALCULATING THE GINI INDEX
    HU, BD
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1995, 39 (3-4) : 353 - 358
  • [35] The Gini Index and Measures of Inequality
    Farris, Frank A.
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (10): : 851 - 864
  • [36] Random-Index PIR and Applications
    Gentry, Craig
    Halevi, Shai
    Magri, Bernardo
    Nielsen, Jesper Buus
    Yakoubov, Sophia
    THEORY OF CRYPTOGRAPHY, TCC 2021, PT III, 2021, 13044 : 32 - 61
  • [37] A Note on the Estimation of the Gini Index
    Djolov, George
    MARGIN-JOURNAL OF APPLIED ECONOMIC RESEARCH, 2014, 8 (03): : 237 - 256
  • [38] A characterization of the Gini segregation index
    Puerta, Carmen
    Urrutia, Ana
    SOCIAL CHOICE AND WELFARE, 2016, 47 (03) : 519 - 529
  • [40] Bounds on the Entropy of a Function of a Random Variable and Their Applications
    Cicalese, Ferdinando
    Gargano, Luisa
    Vaccaro, Ugo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2220 - 2230