Transformations that minimize the Gini index of a random variable and applications

被引:0
|
作者
Michael McAsey
Libin Mou
机构
[1] Bradley University,Department of Mathematics
来源
关键词
Gini index; Minimization; Equitable taxation;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a continuous or discrete random variable with values in [0,M] and consider all functions (here called transformations) q:[0,M]→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q:[0,M]\to [0,\infty )$\end{document} that are increasing and have given bounded rates B≤q(v)−q(u)v−u≤A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \le \frac {q(v)-q(u)}{v-u} \le A$\end{document} for u < v. We prove that among such transformations, there is a transformation q that minimizes the Gini index of q(X), and such a q can be chosen as piecewise linear with only two rates, namely A and B. In the motivation for the study, X represents the incomes of a population. Our results imply that among all such tax policies with fixed allowable minimum and maximum tax rates, there is a tax policy that minimizes the Gini index of the disposable incomes of the population and such a tax policy has only two brackets with the given minimum and maximum rates.
引用
收藏
页码:483 / 502
页数:19
相关论文
共 50 条
  • [41] On the variable sum exdeg index of random tree structures
    Beiranvand, Alimohammad
    Kazemi, Ramin
    Kohansal, Akram
    Hormozinejad, Farshin
    Ghalani, Mohammad Reza
    FILOMAT, 2024, 38 (09) : 3085 - 3092
  • [42] EMPIRICAL LIKELIHOOD METHODS FOR THE GINI INDEX
    Peng, Liang
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2011, 53 (02) : 131 - 139
  • [43] Gini-Impurity Index Analysis
    Yuan, Ye
    Wu, Liji
    Zhang, Xiangmin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 3154 - 3169
  • [44] An Elementary Interpretation of the Gini Inequality Index
    S. Subramanian
    Theory and Decision, 2002, 52 : 375 - 379
  • [45] DISPERSION, ASYMMETRY AND THE GINI INDEX OF INEQUALITY
    BERREBI, ZM
    SILBER, J
    INTERNATIONAL ECONOMIC REVIEW, 1987, 28 (02) : 331 - 338
  • [46] Fuzzy Version of Gini’s Index
    Besma Belhadj
    Firas Kaabi
    Mejda Bouanani
    Social Indicators Research, 2021, 157 : 1079 - 1087
  • [47] Gini index estimation for lifetime data
    Lv, Xiaofeng
    Zhang, Gupeng
    Ren, Guangyu
    LIFETIME DATA ANALYSIS, 2017, 23 (02) : 275 - 304
  • [48] Fuzzy Version of Gini's Index
    Belhadj, Besma
    Kaabi, Firas
    Bouanani, Mejda
    SOCIAL INDICATORS RESEARCH, 2021, 157 (03) : 1079 - 1087
  • [49] A New Approach of Stochastic Dominance for Ranking Transformations on the Discrete Random Variable
    Gao, Jianwei
    Zhao, Feng
    ECONOMICS-THE OPEN ACCESS OPEN-ASSESSMENT E-JOURNAL, 2017, 11
  • [50] GENERALIZATIONS OF LOGISTIC REGRESSION, WEIGHT OF EVIDENCE, AND THE GINI INDEX FOR A CONTINUOUS TARGET VARIABLE TAKING ON PROBABILISTIC VALUES
    Soloshenko, O. M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2015, 51 (06) : 992 - 1004