The robustness of the generalized Gini index

被引:0
|
作者
S. Settepanella
A. Terni
M. Franciosi
L. Li
机构
[1] Torino University,Department of Economics and Statistics
[2] Pisa University,Department of Mathematics
[3] Guangzhou College of Commerce,School of Economics
来源
关键词
Gini index; Zonoid; Empirical distribution; Hausdorff metric; 28B05; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}, which we call zonoid map, from the space of all non-negative, finite Borel measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with finite first moment to the space of zonoids of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. This map, connecting Borel measure theory with zonoids theory, allows to slightly generalize the Gini volume introduced, in the context of Industrial Economics, by Dosi (J Ind Econ 4:875–907, 2016). This volume, based on the geometric notion of zonoid, is introduced as a measure of heterogeneity among firms in an industry and it turned out to be a quite interesting index as it is a multidimensional generalization of the well-known and broadly used Gini index. By exploiting the mathematical context offered by our definition, we prove the continuity of the map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} which, in turn, allows to prove the validity of a SLLN-type theorem for our generalized Gini index and, hence, for the Gini volume. Both results, the continuity of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} and the SLLN theorem, are particularly useful when dealing with a huge amount of multidimensional data.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 50 条
  • [1] The robustness of the generalized Gini index
    Settepanella, S.
    Terni, A.
    Franciosi, M.
    Li, L.
    DECISIONS IN ECONOMICS AND FINANCE, 2022, 45 (02) : 521 - 539
  • [2] Intersecting generalized Lorenz curves and the Gini index
    Claudio Zoli
    Social Choice and Welfare, 1999, 16 : 183 - 196
  • [3] Intersecting generalized Lorenz curves and the Gini index
    Zoli, C
    SOCIAL CHOICE AND WELFARE, 1999, 16 (02) : 183 - 196
  • [4] The Generalized Gini index and the measurement of income mobility
    Silber, Jacques
    Weber, Michal
    ECONOMICS BULLETIN, 2008, 4
  • [5] GINI INDEX ON GENERALIZED r-PARTITIONS
    Mansour, Toufik
    Schork, Matthias
    Shattuck, Mark
    Wagner, Stephan
    MATHEMATICA SLOVACA, 2022, 72 (05) : 1129 - 1144
  • [6] Fair and efficient vaccine allocation: A generalized Gini index approach
    Gutjahr, Walter J.
    PRODUCTION AND OPERATIONS MANAGEMENT, 2023, 32 (12) : 4114 - 4134
  • [7] Multi-objective Bandits: Optimizing the Generalized Gini Index
    Busa-Fekete, Robert
    Szorenyi, Balazs
    Weng, Paul
    Mannor, Shie
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [8] A multidimensional Gini index
    Banerjee, Asis Kumar
    MATHEMATICAL SOCIAL SCIENCES, 2010, 60 (02) : 87 - 93
  • [9] Maximum entropy estimation of income share function from generalized Gini index
    Rad, N. Nakhaei
    Borzadaran, G. R. Mohtashami
    Yari, G. H.
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (16) : 2910 - 2921
  • [10] Extended Gini index
    Dubey, Ram Sewak
    Laguzzi, Giorgio
    ECONOMICS BULLETIN, 2021, 41 (02): : 654 - 661