The robustness of the generalized Gini index

被引:0
|
作者
S. Settepanella
A. Terni
M. Franciosi
L. Li
机构
[1] Torino University,Department of Economics and Statistics
[2] Pisa University,Department of Mathematics
[3] Guangzhou College of Commerce,School of Economics
来源
关键词
Gini index; Zonoid; Empirical distribution; Hausdorff metric; 28B05; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}, which we call zonoid map, from the space of all non-negative, finite Borel measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with finite first moment to the space of zonoids of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. This map, connecting Borel measure theory with zonoids theory, allows to slightly generalize the Gini volume introduced, in the context of Industrial Economics, by Dosi (J Ind Econ 4:875–907, 2016). This volume, based on the geometric notion of zonoid, is introduced as a measure of heterogeneity among firms in an industry and it turned out to be a quite interesting index as it is a multidimensional generalization of the well-known and broadly used Gini index. By exploiting the mathematical context offered by our definition, we prove the continuity of the map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} which, in turn, allows to prove the validity of a SLLN-type theorem for our generalized Gini index and, hence, for the Gini volume. Both results, the continuity of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} and the SLLN theorem, are particularly useful when dealing with a huge amount of multidimensional data.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 50 条
  • [21] Practical modified Gini index
    Malul, Miki
    Shapira, Daniel
    Shoham, Amir
    APPLIED ECONOMICS LETTERS, 2013, 20 (04) : 324 - 327
  • [22] THE BRADFORD DISTRIBUTION AND THE GINI INDEX
    BURRELL, QL
    SCIENTOMETRICS, 1991, 21 (02) : 181 - 194
  • [23] A characterization of the Gini segregation index
    Carmen Puerta
    Ana Urrutia
    Social Choice and Welfare, 2016, 47 : 519 - 529
  • [24] ON THONS AXIOMATIZATION OF THE GINI INDEX
    TRANNOY, A
    MATHEMATICAL SOCIAL SCIENCES, 1986, 11 (02) : 191 - 194
  • [25] INSURANCE RATEMAKING AND A GINI INDEX
    Frees, Edward W.
    Meyers, Glenn
    Cummings, A. David
    JOURNAL OF RISK AND INSURANCE, 2014, 81 (02) : 335 - 366
  • [26] The Gini Index and Measures of Inequality
    Farris, Frank A.
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (10): : 851 - 864
  • [27] A NOTE ON CALCULATING THE GINI INDEX
    HU, BD
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1995, 39 (3-4) : 353 - 358
  • [28] ON AN EXTENSION OF THE GINI INEQUALITY INDEX
    YITZHAKI, S
    INTERNATIONAL ECONOMIC REVIEW, 1983, 24 (03) : 617 - 628
  • [29] A characterization of the Gini segregation index
    Puerta, Carmen
    Urrutia, Ana
    SOCIAL CHOICE AND WELFARE, 2016, 47 (03) : 519 - 529
  • [30] A Note on the Estimation of the Gini Index
    Djolov, George
    MARGIN-JOURNAL OF APPLIED ECONOMIC RESEARCH, 2014, 8 (03): : 237 - 256