The robustness of the generalized Gini index

被引:0
|
作者
S. Settepanella
A. Terni
M. Franciosi
L. Li
机构
[1] Torino University,Department of Economics and Statistics
[2] Pisa University,Department of Mathematics
[3] Guangzhou College of Commerce,School of Economics
来源
关键词
Gini index; Zonoid; Empirical distribution; Hausdorff metric; 28B05; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}, which we call zonoid map, from the space of all non-negative, finite Borel measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with finite first moment to the space of zonoids of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. This map, connecting Borel measure theory with zonoids theory, allows to slightly generalize the Gini volume introduced, in the context of Industrial Economics, by Dosi (J Ind Econ 4:875–907, 2016). This volume, based on the geometric notion of zonoid, is introduced as a measure of heterogeneity among firms in an industry and it turned out to be a quite interesting index as it is a multidimensional generalization of the well-known and broadly used Gini index. By exploiting the mathematical context offered by our definition, we prove the continuity of the map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} which, in turn, allows to prove the validity of a SLLN-type theorem for our generalized Gini index and, hence, for the Gini volume. Both results, the continuity of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} and the SLLN theorem, are particularly useful when dealing with a huge amount of multidimensional data.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 50 条
  • [31] Generalized Gini Indices of Equality of Opportunity
    John A. Weymark
    The Journal of Economic Inequality, 2003, 1 (1) : 5 - 24
  • [32] Entropy maximization under the constraints on the generalized Gini index and its application in modeling income distributions
    Tanak, A. Khosravi
    Borzadaran, G. R. Mohtashami
    Ahmadi, J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 438 : 657 - 666
  • [33] EMPIRICAL LIKELIHOOD METHODS FOR THE GINI INDEX
    Peng, Liang
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2011, 53 (02) : 131 - 139
  • [34] The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data
    Marina Wright Muelas
    Farah Mughal
    Steve O’Hagan
    Philip J. Day
    Douglas B. Kell
    Scientific Reports, 9
  • [35] DISPERSION, ASYMMETRY AND THE GINI INDEX OF INEQUALITY
    BERREBI, ZM
    SILBER, J
    INTERNATIONAL ECONOMIC REVIEW, 1987, 28 (02) : 331 - 338
  • [36] Fuzzy Version of Gini’s Index
    Besma Belhadj
    Firas Kaabi
    Mejda Bouanani
    Social Indicators Research, 2021, 157 : 1079 - 1087
  • [37] Gini index estimation for lifetime data
    Lv, Xiaofeng
    Zhang, Gupeng
    Ren, Guangyu
    LIFETIME DATA ANALYSIS, 2017, 23 (02) : 275 - 304
  • [38] Gini-Impurity Index Analysis
    Yuan, Ye
    Wu, Liji
    Zhang, Xiangmin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 3154 - 3169
  • [39] An Elementary Interpretation of the Gini Inequality Index
    S. Subramanian
    Theory and Decision, 2002, 52 : 375 - 379
  • [40] Fuzzy Version of Gini's Index
    Belhadj, Besma
    Kaabi, Firas
    Bouanani, Mejda
    SOCIAL INDICATORS RESEARCH, 2021, 157 (03) : 1079 - 1087