The robustness of the generalized Gini index

被引:0
|
作者
Settepanella, S. [1 ]
Terni, A. [2 ]
Franciosi, M. [2 ]
Li, L. [3 ]
机构
[1] Turin Univ, Dept Econ & Stat, Turin, Italy
[2] Pisa Univ, Dept Math, Pisa, Italy
[3] Guangzhou Coll Commerce, Sch Econ, Guangzhou, Peoples R China
关键词
Gini index; Zonoid; Empirical distribution; Hausdorff metric;
D O I
10.1007/s10203-022-00378-7
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this paper, we introduce a map Phi, which we call zonoid map, from the space of all non-negative, finite Borel measures on R-n with finite first moment to the space of zonoids of R-n. This map, connecting Borel measure theory with zonoids theory, allows to slightly generalize the Gini volume introduced, in the context of Industrial Economics, by Dosi (J Ind Econ 4:875-907, 2016). This volume, based on the geometric notion of zonoid, is introduced as a measure of heterogeneity among firms in an industry and it turned out to be a quite interesting index as it is a multidimensional generalization of the well-known and broadly used Gini index. By exploiting the mathematical context offered by our definition, we prove the continuity of the map Phi which, in turn, allows to prove the validity of a SLLN-type theorem for our generalized Gini index and, hence, for the Gini volume. Both results, the continuity of Phi and the SLLN theorem, are particularly useful when dealing with a huge amount of multidimensional data.
引用
收藏
页码:521 / 539
页数:19
相关论文
共 50 条
  • [1] The robustness of the generalized Gini index
    S. Settepanella
    A. Terni
    M. Franciosi
    L. Li
    [J]. Decisions in Economics and Finance, 2022, 45 : 521 - 539
  • [2] Intersecting generalized Lorenz curves and the Gini index
    Claudio Zoli
    [J]. Social Choice and Welfare, 1999, 16 : 183 - 196
  • [3] Intersecting generalized Lorenz curves and the Gini index
    Zoli, C
    [J]. SOCIAL CHOICE AND WELFARE, 1999, 16 (02) : 183 - 196
  • [4] The Generalized Gini index and the measurement of income mobility
    Silber, Jacques
    Weber, Michal
    [J]. ECONOMICS BULLETIN, 2008, 4
  • [5] GINI INDEX ON GENERALIZED r-PARTITIONS
    Mansour, Toufik
    Schork, Matthias
    Shattuck, Mark
    Wagner, Stephan
    [J]. MATHEMATICA SLOVACA, 2022, 72 (05) : 1129 - 1144
  • [6] Multi-objective Bandits: Optimizing the Generalized Gini Index
    Busa-Fekete, Robert
    Szorenyi, Balazs
    Weng, Paul
    Mannor, Shie
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [7] Fair and efficient vaccine allocation: A generalized Gini index approach
    Gutjahr, Walter J.
    [J]. PRODUCTION AND OPERATIONS MANAGEMENT, 2023, 32 (12) : 4114 - 4134
  • [8] A multidimensional Gini index
    Banerjee, Asis Kumar
    [J]. MATHEMATICAL SOCIAL SCIENCES, 2010, 60 (02) : 87 - 93
  • [9] Maximum entropy estimation of income share function from generalized Gini index
    Rad, N. Nakhaei
    Borzadaran, G. R. Mohtashami
    Yari, G. H.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (16) : 2910 - 2921
  • [10] Extended Gini index
    Dubey, Ram Sewak
    Laguzzi, Giorgio
    [J]. ECONOMICS BULLETIN, 2021, 41 (02): : 654 - 661