Distances in Sierpiński graphs and on the Sierpiński gasket

被引:0
|
作者
Ligia L. Cristea
Bertran Steinsky
机构
[1] Technical University of Graz,
来源
Aequationes mathematicae | 2013年 / 85卷
关键词
Primary 28A80; Secondary 05C12; Sierpiński gasket; fractal; graph; geodesic distance;
D O I
暂无
中图分类号
学科分类号
摘要
The well known planar fractal called the Sierpiński gasket can be defined with the help of a related sequence of graphs {Gn}n ≥ 0, where Gn is the n-th Sierpiński graph, embedded in the Euclidean plane. In the present paper we prove geometric criteria that allow us to decide, whether a shortest path between two distinct vertices x and y in Gn, that lie in two neighbouring elementary triangles (of the same level), goes through the common vertex of the triangles or through two distinct vertices (both distinct from the common vertex) of those triangles. We also show criteria for the analogous problem on the planar Sierpiński gasket and in the 3-dimensional Euclidean space.
引用
收藏
页码:201 / 219
页数:18
相关论文
共 50 条
  • [41] Concerning the Vector-Valued Fractal Interpolation Functions on the Sierpiński Gasket
    M. A. Navascués
    S. Verma
    P. Viswanathan
    [J]. Mediterranean Journal of Mathematics, 2021, 18
  • [42] The Linear t-Colorings of Sierpiński-Like Graphs
    Bing Xue
    Liancui Zuo
    Guanghui Wang
    Guojun Li
    [J]. Graphs and Combinatorics, 2014, 30 : 755 - 767
  • [43] Packing Chromatic Number of Base-3 Sierpiński Graphs
    Boštjan Brešar
    Sandi Klavžar
    Douglas F. Rall
    [J]. Graphs and Combinatorics, 2016, 32 : 1313 - 1327
  • [44] Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs
    Altassan, Alaa
    Imran, Muhammad
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (02)
  • [45] Sierpiński图与Sierpińskigasket图的条件着色
    宋兴坤
    梁晓东
    [J]. 新疆大学学报(自然科学版)., 2015, 32 (03) - 308
  • [47] Assembling molecular Sierpiński triangle fractals
    Shang J.
    Wang Y.
    Chen M.
    Dai J.
    Zhou X.
    Kuttner J.
    Hilt G.
    Shao X.
    Gottfried J.M.
    Wu K.
    [J]. Nature Chemistry, 2015, 7 (5) : 389 - 393
  • [48] Qualitative Analysis of Gradient-Type Systems with Oscillatory Nonlinearities on the Sierpiński Gasket
    Gabriele BONANNO
    Giovanni MOLICA BISCI
    Vicentiu RDULESCU
    [J]. Chinese Annals of Mathematics,Series B, 2013, 34 (03) : 381 - 398
  • [49] Self-assembling Sierpiński triangles
    Steven L. Tait
    [J]. Nature Chemistry, 2015, 7 : 370 - 371
  • [50] Global Strong Defensive Alliances of Sierpiński-Like Graphs
    Chien-Hung Lin
    Jia-Jie Liu
    Yue-Li Wang
    [J]. Theory of Computing Systems, 2013, 53 : 365 - 385