Self-assembling Sierpiński triangles

被引:0
|
作者
Steven L. Tait
机构
[1] Indiana University,Steven L. Tait is in the Department of Chemistry
[2] Bloomington,undefined
[3] Indiana 47405,undefined
[4] USA,undefined
来源
Nature Chemistry | 2015年 / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Defect-free Sierpiński triangles can be self-assembled on a silver surface through a combination of molecular design and thermal annealing. Three-fold halogen-bonding arrays and precise surface epitaxy preclude structural errors, thus enabling the high-level complexity of these supramolecular fractal patterns.
引用
收藏
页码:370 / 371
页数:1
相关论文
共 50 条
  • [2] Assembling molecular Sierpiński triangle fractals
    Shang J.
    Wang Y.
    Chen M.
    Dai J.
    Zhou X.
    Kuttner J.
    Hilt G.
    Shao X.
    Gottfried J.M.
    Wu K.
    [J]. Nature Chemistry, 2015, 7 (5) : 389 - 393
  • [3] SURFACE CHEMISTRY Self-assembling Sierpinski triangles
    Tait, Steven L.
    [J]. Nature Chemistry, 2015, 7 (05) : 370 - 371
  • [4] Quantization for uniform distributions on stretched Sierpiński triangles
    Doğan Çömez
    Mrinal Kanti Roychowdhury
    [J]. Monatshefte für Mathematik, 2019, 190 : 79 - 100
  • [5] Packing Sierpiński Triangles into Two-Dimensional Crystals
    Zhang, Yajie
    Zhang, Xue
    Li, Yaru
    Zhao, Shuting
    Hou, Shimin
    Wu, Kai
    Wang, Yongfeng
    [J]. Journal of the American Chemical Society, 2020, 142 (42): : 17928 - 17932
  • [6] Sierpiński triangles formed by molecules with linear backbones on Au(111)
    Xue Zhang
    Ruoning Li
    Na Li
    Gaochen Gu
    Yajie Zhang
    Shimin Hou
    Yongfeng Wang
    [J]. Chinese Chemical Letters, 2018, 29 (06) : 967 - 969
  • [7] Structure transformation from Sierpiński triangles to chains assisted by gas molecules
    Chao Li
    Zhen Xu
    Yajie Zhang
    Jie Li
    Na Xue
    Ruoning Li
    Mingjun Zhong
    Tianhao Wu
    Yifan Wang
    Na Li
    Ziyong Shen
    Shimin Hou
    Richard Berndt
    Yongfeng Wang
    Song Gao
    [J]. National Science Review, 2023, 10 (07) : 151 - 158
  • [8] Distances in Sierpiński graphs and on the Sierpiński gasket
    Ligia L. Cristea
    Bertran Steinsky
    [J]. Aequationes mathematicae, 2013, 85 : 201 - 219
  • [9] Self-repelling walk on the Sierpiński gasket
    B.M. Hambly
    Kumiko Hattori
    Tetsuya Hattori
    [J]. Probability Theory and Related Fields, 2002, 124 : 1 - 25
  • [10] On a problem of Sierpiński,Ⅱ
    CHEN YongGao
    FANG JinHui
    [J]. Science China Mathematics, 2014, 57 (12) : 2519 - 2524