Distances in Sierpiński graphs and on the Sierpiński gasket

被引:0
|
作者
Ligia L. Cristea
Bertran Steinsky
机构
[1] Technical University of Graz,
来源
Aequationes mathematicae | 2013年 / 85卷
关键词
Primary 28A80; Secondary 05C12; Sierpiński gasket; fractal; graph; geodesic distance;
D O I
暂无
中图分类号
学科分类号
摘要
The well known planar fractal called the Sierpiński gasket can be defined with the help of a related sequence of graphs {Gn}n ≥ 0, where Gn is the n-th Sierpiński graph, embedded in the Euclidean plane. In the present paper we prove geometric criteria that allow us to decide, whether a shortest path between two distinct vertices x and y in Gn, that lie in two neighbouring elementary triangles (of the same level), goes through the common vertex of the triangles or through two distinct vertices (both distinct from the common vertex) of those triangles. We also show criteria for the analogous problem on the planar Sierpiński gasket and in the 3-dimensional Euclidean space.
引用
收藏
页码:201 / 219
页数:18
相关论文
共 50 条
  • [1] Abelian sandpiles on Sierpiński gasket graphs
    Kaiser, Robin
    Sava-Huss, Ecaterina
    Wang, Yuwen
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [2] The 2-Rainbow Domination of Sierpiński Graphs and Extended Sierpiński Graphs
    Jia-Jie Liu
    Shun-Chieh Chang
    Chiou-Jiun Lin
    [J]. Theory of Computing Systems, 2017, 61 : 893 - 906
  • [3] The Sierpi?ski product of graphs
    Kovic, Jurij
    Pisanski, Tomaz
    Zemljic, Sara Sabrina
    Zitnik, Arjana
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
  • [4] Szegö Limit Theorems on the Sierpiński Gasket
    Kasso A. Okoudjou
    Luke G. Rogers
    Robert S. Strichartz
    [J]. Journal of Fourier Analysis and Applications, 2010, 16 : 434 - 447
  • [5] On some bounds of the topological indices of generalized Sierpiński and extended Sierpiński graphs
    Imran Javaid
    Hira Benish
    Muhammad Imran
    Amna Khan
    Zafar Ullah
    [J]. Journal of Inequalities and Applications, 2019
  • [6] Non-removability of the Sierpiński gasket
    Dimitrios Ntalampekos
    [J]. Inventiones mathematicae, 2019, 216 : 519 - 595
  • [7] On generalization of Sierpiński gasket in Lobachevskii plane
    Troshin P.I.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (4) : 751 - 762
  • [8] Equidistribution and Brownian motion on the Sierpiński gasket
    Peter J. Grabner
    Robert F. Tichy
    [J]. Monatshefte für Mathematik, 1998, 125 : 147 - 164
  • [9] Coloring the Square of Sierpiński Graphs
    Bing Xue
    Liancui Zuo
    Guojun Li
    [J]. Graphs and Combinatorics, 2015, 31 : 1795 - 1805
  • [10] The Average Eccentricity of Sierpiński Graphs
    Andreas M. Hinz
    Daniele Parisse
    [J]. Graphs and Combinatorics, 2012, 28 : 671 - 686