On generalization of Sierpiński gasket in Lobachevskii plane

被引:1
|
作者
Troshin P.I. [1 ]
机构
[1] Kazan (Volga Region) Federal University, ul. Kremlevskaya 35, Kazan
关键词
iterated function system; Lobachevskii space; Mandelbrot set; Sierpiński gasket;
D O I
10.1134/S1995080217040205
中图分类号
学科分类号
摘要
We construct an analogue of Sierpiński gasket in Lobachevskii plane by means of iterated function system with maps from a transformation group of this space. The investigation of a new family of attractors and a Mandelbrot set associated with it reveals higher capacity of Lobachevskii geometry compared to that of Euclid. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:751 / 762
页数:11
相关论文
共 50 条
  • [1] Distances in Sierpiński graphs and on the Sierpiński gasket
    Ligia L. Cristea
    Bertran Steinsky
    [J]. Aequationes mathematicae, 2013, 85 : 201 - 219
  • [2] Abelian sandpiles on Sierpiński gasket graphs
    Kaiser, Robin
    Sava-Huss, Ecaterina
    Wang, Yuwen
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [3] Szegö Limit Theorems on the Sierpiński Gasket
    Kasso A. Okoudjou
    Luke G. Rogers
    Robert S. Strichartz
    [J]. Journal of Fourier Analysis and Applications, 2010, 16 : 434 - 447
  • [4] Non-removability of the Sierpiński gasket
    Dimitrios Ntalampekos
    [J]. Inventiones mathematicae, 2019, 216 : 519 - 595
  • [5] Equidistribution and Brownian motion on the Sierpiński gasket
    Peter J. Grabner
    Robert F. Tichy
    [J]. Monatshefte für Mathematik, 1998, 125 : 147 - 164
  • [6] Self-repelling walk on the Sierpiński gasket
    B.M. Hambly
    Kumiko Hattori
    Tetsuya Hattori
    [J]. Probability Theory and Related Fields, 2002, 124 : 1 - 25
  • [7] Harmonic analysis on the Sierpiński gasket and singular functions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    [J]. Acta Mathematica Hungarica, 2014, 143 : 58 - 74
  • [8] Sierpiński Gasket图的星着色
    潘玉美
    莫明忠
    [J]. 西南师范大学学报(自然科学版)., 2011, 36 (03) - 20
  • [9] Fractional Gaussian fields on the Sierpiński Gasket and related fractals
    Fabrice Baudoin
    Céline Lacaux
    [J]. Journal d'Analyse Mathématique, 2022, 146 : 719 - 739
  • [10] Uniformization of Sierpiński carpets in the plane
    Mario Bonk
    [J]. Inventiones mathematicae, 2011, 186 : 559 - 665