Equidistribution and Brownian motion on the Sierpiński gasket

被引:0
|
作者
Peter J. Grabner
Robert F. Tichy
机构
[1] Technische Universität Graz,Institut für Mathematik
来源
关键词
60B99; 11K06; diffusion processes; fractals; discrepancy; uniform distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce several concepts of discrepancy for sequences on the Sierpiński gasket. Furthermore a law of iterated logarithm for the discrepancy of trajectories of Brownian motion is proved. The main tools for this result are regularity properties of the heat kernel on the Sierpiński gasket. Some of the results can be generalized to arbitrary nested fractals in the sense of T. Lindstrøm.
引用
收藏
页码:147 / 164
页数:17
相关论文
共 50 条
  • [1] Equidistribution and Brownian motion on the Sierpinski gasket
    Grabner, PJ
    Tichy, RF
    [J]. MONATSHEFTE FUR MATHEMATIK, 1998, 125 (02): : 147 - 164
  • [2] Distances in Sierpiński graphs and on the Sierpiński gasket
    Ligia L. Cristea
    Bertran Steinsky
    [J]. Aequationes mathematicae, 2013, 85 : 201 - 219
  • [3] Abelian sandpiles on Sierpiński gasket graphs
    Kaiser, Robin
    Sava-Huss, Ecaterina
    Wang, Yuwen
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [4] Szegö Limit Theorems on the Sierpiński Gasket
    Kasso A. Okoudjou
    Luke G. Rogers
    Robert S. Strichartz
    [J]. Journal of Fourier Analysis and Applications, 2010, 16 : 434 - 447
  • [5] Non-removability of the Sierpiński gasket
    Dimitrios Ntalampekos
    [J]. Inventiones mathematicae, 2019, 216 : 519 - 595
  • [6] On generalization of Sierpiński gasket in Lobachevskii plane
    Troshin P.I.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (4) : 751 - 762
  • [7] Self-repelling walk on the Sierpiński gasket
    B.M. Hambly
    Kumiko Hattori
    Tetsuya Hattori
    [J]. Probability Theory and Related Fields, 2002, 124 : 1 - 25
  • [8] Harmonic analysis on the Sierpiński gasket and singular functions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    [J]. Acta Mathematica Hungarica, 2014, 143 : 58 - 74
  • [9] Sierpiński Gasket图的星着色
    潘玉美
    莫明忠
    [J]. 西南师范大学学报(自然科学版)., 2011, 36 (03) - 20
  • [10] Fractional Gaussian fields on the Sierpiński Gasket and related fractals
    Fabrice Baudoin
    Céline Lacaux
    [J]. Journal d'Analyse Mathématique, 2022, 146 : 719 - 739