The 2-Rainbow Domination of Sierpiński Graphs and Extended Sierpiński Graphs

被引:0
|
作者
Jia-Jie Liu
Shun-Chieh Chang
Chiou-Jiun Lin
机构
[1] Shih Hsin University,Department of Information Management
[2] National Taiwan University of Science and Technology,Department of Information Management
来源
关键词
-rainbow domination function; Dominating set; Sierpiński graphs; Extended Sierpiński graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let G(V, E) be a connected and undirected graph with n-vertex-set V and m-edge-set E. For each v ∈ V, let N(v) = {u|v ∈ V and(u, v) ∈ E}. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to a k-bit Boolean string f(v) = fk(v)fk − 1(v) … f1(v), i.e., fi(v) ∈ {0, 1}, 1 ≤ i ≤ k, such that for any vertex v with f(v) = 0(k) we have ⋈u ∈ N(v)f(u) = 1(k), for all v ∈ V, where ⋈u ∈ Sf(u) denotes the result of taking bitwise OR operation on f(u), for all u ∈ S. The weight of f is defined as w(f)=∑v∈V∑i=1kfi(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w(f) = {\sum }_{v\in V}{\sum }^{k}_{i=1} f_{i}(v)$\end{document}. The k-rainbow domination number γkr(G) is the minimum weight of a k-rainbow dominating function over all k-rainbow dominating functions of G. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G. In this paper, we determine γ2r(S(n, m)), γ2r(S+(n, m)), and γ2r(S++(n, m)), where S(n, m), S+(n, m), and S++(n, m) are Sierpiński graphs and extended Sierpiński graphs.
引用
收藏
页码:893 / 906
页数:13
相关论文
共 50 条
  • [1] The 2-Rainbow Domination of SierpiA"ski Graphs and Extended SierpiA"ski Graphs
    Liu, Jia-Jie
    Chang, Shun-Chieh
    Lin, Chiou-Jiun
    [J]. THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 893 - 906
  • [2] Distances in Sierpiński graphs and on the Sierpiński gasket
    Ligia L. Cristea
    Bertran Steinsky
    [J]. Aequationes mathematicae, 2013, 85 : 201 - 219
  • [3] Secure Domination Parameters in Sierpiński Graphs
    Saraswathy, Gisha
    Menon, Manju K.
    [J]. IAENG International Journal of Applied Mathematics, 2023, 53 (02):
  • [4] On some bounds of the topological indices of generalized Sierpiński and extended Sierpiński graphs
    Imran Javaid
    Hira Benish
    Muhammad Imran
    Amna Khan
    Zafar Ullah
    [J]. Journal of Inequalities and Applications, 2019
  • [5] The Sierpi?ski product of graphs
    Kovic, Jurij
    Pisanski, Tomaz
    Zemljic, Sara Sabrina
    Zitnik, Arjana
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
  • [6] Coloring the Square of Sierpiński Graphs
    Bing Xue
    Liancui Zuo
    Guojun Li
    [J]. Graphs and Combinatorics, 2015, 31 : 1795 - 1805
  • [7] Generalized Power Domination: Propagation Radius and Sierpiński Graphs
    Paul Dorbec
    Sandi Klavžar
    [J]. Acta Applicandae Mathematicae, 2014, 134 : 75 - 86
  • [8] The Average Eccentricity of Sierpiński Graphs
    Andreas M. Hinz
    Daniele Parisse
    [J]. Graphs and Combinatorics, 2012, 28 : 671 - 686
  • [9] Contiguous Search Problem in SierpiÅ"ski Graphs
    Luccio, Flaminia L.
    [J]. THEORY OF COMPUTING SYSTEMS, 2009, 44 (02) : 186 - 204
  • [10] On the AVDTC of Sierpiński-type graphs☆
    Palma, Miguel A. D. R.
    Leon, Adriana J.
    Dantas, Simone
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 346 : 10 - 29