The 2-Rainbow Domination of Sierpiński Graphs and Extended Sierpiński Graphs

被引:0
|
作者
Jia-Jie Liu
Shun-Chieh Chang
Chiou-Jiun Lin
机构
[1] Shih Hsin University,Department of Information Management
[2] National Taiwan University of Science and Technology,Department of Information Management
来源
关键词
-rainbow domination function; Dominating set; Sierpiński graphs; Extended Sierpiński graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let G(V, E) be a connected and undirected graph with n-vertex-set V and m-edge-set E. For each v ∈ V, let N(v) = {u|v ∈ V and(u, v) ∈ E}. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to a k-bit Boolean string f(v) = fk(v)fk − 1(v) … f1(v), i.e., fi(v) ∈ {0, 1}, 1 ≤ i ≤ k, such that for any vertex v with f(v) = 0(k) we have ⋈u ∈ N(v)f(u) = 1(k), for all v ∈ V, where ⋈u ∈ Sf(u) denotes the result of taking bitwise OR operation on f(u), for all u ∈ S. The weight of f is defined as w(f)=∑v∈V∑i=1kfi(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w(f) = {\sum }_{v\in V}{\sum }^{k}_{i=1} f_{i}(v)$\end{document}. The k-rainbow domination number γkr(G) is the minimum weight of a k-rainbow dominating function over all k-rainbow dominating functions of G. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G. In this paper, we determine γ2r(S(n, m)), γ2r(S+(n, m)), and γ2r(S++(n, m)), where S(n, m), S+(n, m), and S++(n, m) are Sierpiński graphs and extended Sierpiński graphs.
引用
收藏
页码:893 / 906
页数:13
相关论文
共 50 条
  • [31] On 2-rainbow domination and Roman domination in graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 85 - 93
  • [32] On the effective diffusion in the Sierpiński carpet
    C. G. Aguilar-Madera
    E. C. Herrera-Hernández
    G. Espinosa-Paredes
    J. A. Briones-Carrillo
    [J]. Computational Geosciences, 2021, 25 : 467 - 473
  • [33] A century of Sierpiński–Zygmund functions
    K. C. Ciesielski
    J. B. Seoane-Sepúlveda
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3863 - 3901
  • [34] Random rotor walks and i.i.d. sandpiles on Sierpiński graphs
    Kaiser, Robin
    Sava-Huss, Ecaterina
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 209
  • [35] Uniformization of Sierpiński carpets in the plane
    Mario Bonk
    [J]. Inventiones mathematicae, 2011, 186 : 559 - 665
  • [36] On the 2-rainbow domination stable graphs
    Zepeng Li
    Zehui Shao
    Pu Wu
    Taiyin Zhao
    [J]. Journal of Combinatorial Optimization, 2019, 37 : 1327 - 1341
  • [37] Total 2-Rainbow Domination in Graphs
    Jiang, Huiqin
    Rao, Yongsheng
    [J]. MATHEMATICS, 2022, 10 (12)
  • [38] On the 2-rainbow domination stable graphs
    Li, Zepeng
    Shao, Zehui
    Wu, Pu
    Zhao, Taiyin
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (04) : 1327 - 1341
  • [39] 2-Rainbow domination stability of graphs
    Zepeng Li
    Zehui Shao
    Shou-jun Xu
    [J]. Journal of Combinatorial Optimization, 2019, 38 : 836 - 845
  • [40] Sierpiński图与Sierpińskigasket图的条件着色
    宋兴坤
    梁晓东
    [J]. 新疆大学学报(自然科学版), 2015, 32 (03) : 304 - 308