Quantization for uniform distributions on stretched Sierpiński triangles

被引:0
|
作者
Doğan Çömez
Mrinal Kanti Roychowdhury
机构
[1] North Dakota State University,Department of Mathematics, 408E24 Minard Hall
[2] University of Texas Rio Grande Valley,School of Mathematical and Statistical Sciences
来源
关键词
Stretched Sierpiński triangle; Probability measure; Optimal quantizers; Quantization error; Quantization dimension; Quantization coefficient; 60Exx; 28A80; 94A34;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have considered a uniform probability distribution supported by a stretched Sierpiński triangle. For this probability measure, the optimal sets of n-means and the nth quantization errors are determined for all n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. In addition, it is shown that the quantization coefficient for such a measure does not exist though the quantization dimension exists.
引用
收藏
页码:79 / 100
页数:21
相关论文
共 50 条
  • [1] Quantization for uniform distributions on stretched Sierpinski triangles
    Comez, Dogan
    Roychowdhury, Mrinal Kanti
    [J]. MONATSHEFTE FUR MATHEMATIK, 2019, 190 (01): : 79 - 100
  • [2] Self-assembling Sierpiński triangles
    Steven L. Tait
    [J]. Nature Chemistry, 2015, 7 : 370 - 371
  • [3] Deterministic sampling from uniform distributions with Sierpiński space-filling curves
    Hime Aguiar e Oliveira
    [J]. Computational Statistics, 2022, 37 : 535 - 549
  • [4] Packing Sierpiński Triangles into Two-Dimensional Crystals
    Zhang, Yajie
    Zhang, Xue
    Li, Yaru
    Zhao, Shuting
    Hou, Shimin
    Wu, Kai
    Wang, Yongfeng
    [J]. Journal of the American Chemical Society, 2020, 142 (42): : 17928 - 17932
  • [5] Sierpiński triangles formed by molecules with linear backbones on Au(111)
    Xue Zhang
    Ruoning Li
    Na Li
    Gaochen Gu
    Yajie Zhang
    Shimin Hou
    Yongfeng Wang
    [J]. Chinese Chemical Letters, 2018, 29 (06) : 967 - 969
  • [6] Structure transformation from Sierpiński triangles to chains assisted by gas molecules
    Chao Li
    Zhen Xu
    Yajie Zhang
    Jie Li
    Na Xue
    Ruoning Li
    Mingjun Zhong
    Tianhao Wu
    Yifan Wang
    Na Li
    Ziyong Shen
    Shimin Hou
    Richard Berndt
    Yongfeng Wang
    Song Gao
    [J]. National Science Review, 2023, 10 (07) : 151 - 158
  • [7] Distances in Sierpiński graphs and on the Sierpiński gasket
    Ligia L. Cristea
    Bertran Steinsky
    [J]. Aequationes mathematicae, 2013, 85 : 201 - 219
  • [8] UNIFORM DISTRIBUTIONS AND RANDOM TRIANGLES
    GRIFFITHS, D
    [J]. MATHEMATICAL GAZETTE, 1983, 67 (439): : 38 - 42
  • [9] The quantization dimension of the self-affine measures on general Sierpiński carpets
    Sanguo Zhu
    [J]. Monatshefte für Mathematik, 2011, 162 : 355 - 374
  • [10] On a problem of Sierpiński,Ⅱ
    CHEN YongGao
    FANG JinHui
    [J]. Science China Mathematics, 2014, 57 (12) : 2519 - 2524