Quantization for uniform distributions on stretched Sierpiński triangles

被引:0
|
作者
Doğan Çömez
Mrinal Kanti Roychowdhury
机构
[1] North Dakota State University,Department of Mathematics, 408E24 Minard Hall
[2] University of Texas Rio Grande Valley,School of Mathematical and Statistical Sciences
来源
关键词
Stretched Sierpiński triangle; Probability measure; Optimal quantizers; Quantization error; Quantization dimension; Quantization coefficient; 60Exx; 28A80; 94A34;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have considered a uniform probability distribution supported by a stretched Sierpiński triangle. For this probability measure, the optimal sets of n-means and the nth quantization errors are determined for all n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}. In addition, it is shown that the quantization coefficient for such a measure does not exist though the quantization dimension exists.
引用
收藏
页码:79 / 100
页数:21
相关论文
共 50 条
  • [41] Lineability of the functions that are Sierpiński–Zygmund, Darboux, but not connectivity
    Gbrel M. Albkwre
    Krzysztof Chris Ciesielski
    Jerzy Wojciechowski
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [42] A Sierpiński carpet with the co-Hopfian property
    Sergei Merenkov
    [J]. Inventiones mathematicae, 2010, 180 : 361 - 388
  • [43] Resolvability and Convexity Properties in the Sierpiński Product of Graphs
    Michael A. Henning
    Sandi Klavžar
    Ismael G. Yero
    [J]. Mediterranean Journal of Mathematics, 2024, 21
  • [44] Sierpiński图和Sierpiński金字塔上的一些费马型指标(英文)
    郭林
    曾成
    甘庭
    [J]. 应用数学, 2023, 36 (03) : 825 - 830
  • [45] Sierpiński Gasket图的星着色
    潘玉美
    莫明忠
    [J]. 西南师范大学学报(自然科学版), 2011, 36 (03) : 17 - 20
  • [46] Harmonic analysis on the Sierpiński gasket and singular functions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    [J]. Acta Mathematica Hungarica, 2014, 143 : 58 - 74
  • [47] HAUSDORFF DIMENSION OF SKELETON NETWORKS OF SIERPIŃSKI CARPET
    Zeng, Qingcheng
    Xi, Lifeng
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [48] The Hub Number of Sierpiński-Like Graphs
    Chien-Hung Lin
    Jia-Jie Liu
    Yue-Li Wang
    William Chung-Kung Yen
    [J]. Theory of Computing Systems, 2011, 49 : 588 - 600
  • [49] The Wiener index of Sierpiński-like graphs
    Chunmei Luo
    Liancui Zuo
    Philip B. Zhang
    [J]. Journal of Combinatorial Optimization, 2018, 35 : 814 - 841
  • [50] Square Sierpiński carpets and Lattès maps
    Mario Bonk
    Sergei Merenkov
    [J]. Mathematische Zeitschrift, 2020, 296 : 695 - 718