The Linear t-Colorings of Sierpiński-Like Graphs

被引:1
|
作者
Bing Xue
Liancui Zuo
Guanghui Wang
Guojun Li
机构
[1] Shandong University,School of Mathematics
[2] Tianjin Normal University,College of Mathematical Science
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Partition; Linear coloring; Linear forest; Sierpiński-like graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A proper t-coloring of a graph G is a mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi: V(G) \rightarrow [1, t]}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi(u) \neq \varphi(v)}$$\end{document} if u and v are adjacent vertices, where t is a positive integer. The chromatic number of a graph G, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi(G)}$$\end{document} , is the minimum number of colors required in any proper coloring of G. A linear t-coloring of a graph is a proper t-coloring such that the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of a graph G, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${lc(G)}$$\end{document} , is the minimum t such that G has a linear t-coloring. In this paper, the linear t-colorings of Sierpiński-like graphs S(n, k), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^+(n, k)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^{++}(n, k)}$$\end{document} are studied. It is obtained that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${lc(S(n, k))= \chi (S(n, k)) = k}$$\end{document} for any positive integers n and k, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${lc(S^+(n, k)) = \chi(S^+(n, k)) = k}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${lc(S^{++}(n, k)) = \chi(S^{++}(n, k)) = k}$$\end{document} for any positive integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \geq 3}$$\end{document} . Furthermore, we have determined the number of paths and the length of each path in the subgraph induced by the union of any two color classes completely.
引用
收藏
页码:755 / 767
页数:12
相关论文
共 50 条
  • [1] The Linear t-Colorings of SierpiA"ski-Like Graphs
    Xue, Bing
    Zuo, Liancui
    Wang, Guanghui
    Li, Guojun
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 755 - 767
  • [2] The Wiener index of Sierpiński-like graphs
    Chunmei Luo
    Liancui Zuo
    Philip B. Zhang
    [J]. Journal of Combinatorial Optimization, 2018, 35 : 814 - 841
  • [3] The Hub Number of Sierpiński-Like Graphs
    Chien-Hung Lin
    Jia-Jie Liu
    Yue-Li Wang
    William Chung-Kung Yen
    [J]. Theory of Computing Systems, 2011, 49 : 588 - 600
  • [4] Global Strong Defensive Alliances of Sierpiński-Like Graphs
    Chien-Hung Lin
    Jia-Jie Liu
    Yue-Li Wang
    [J]. Theory of Computing Systems, 2013, 53 : 365 - 385
  • [5] The Outer-connected Domination Number of Sierpiński-like Graphs
    Shun-Chieh Chang
    Jia-Jie Liu
    Yue-Li Wang
    [J]. Theory of Computing Systems, 2016, 58 : 345 - 356
  • [6] T-COLORINGS OF GRAPHS
    LIU, DDF
    [J]. DISCRETE MATHEMATICS, 1992, 101 (1-3) : 203 - 212
  • [7] Sierpiński-like图的条件着色
    宋兴坤
    梁晓东
    [J]. 烟台大学学报(自然科学与工程版), 2016, 29 (01) : 9 - 13
  • [8] Greedy T-colorings of graphs
    Janczewski, Robert
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1685 - 1690
  • [9] LIST T-COLORINGS OF GRAPHS
    TESMAN, BA
    [J]. DISCRETE APPLIED MATHEMATICS, 1993, 45 (03) : 277 - 289
  • [10] COMPLEX NETWORKS MODELED ON A KIND OF SIERPIŃSKI-LIKE CARPET
    Huang, Liang
    Peng, Li
    [J]. Fractals, 2022, 30 (03):