Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs

被引:0
|
作者
Altassan, Alaa [1 ]
Imran, Muhammad [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
关键词
generalized Sierpinski graphs; irregularity measure; connectivity indices; UNICYCLIC GRAPHS; ZAGREB INDEXES; BOUNDS; TREES;
D O I
10.3390/fractalfract8020123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we compute the irregularity measures of generalized Sierpinski graphs and obtain some bounds on these irregularities. Moreover, we discuss some bounds on connectivity indices for generalized Sierpinski graphs of any arbitrary graph H along with classification of the extremal graphs used to attain them.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On some bounds of the topological indices of generalized Sierpiński and extended Sierpiński graphs
    Imran Javaid
    Hira Benish
    Muhammad Imran
    Amna Khan
    Zafar Ullah
    [J]. Journal of Inequalities and Applications, 2019
  • [2] Distances in Sierpiński graphs and on the Sierpiński gasket
    Ligia L. Cristea
    Bertran Steinsky
    [J]. Aequationes mathematicae, 2013, 85 : 201 - 219
  • [3] Valency-Based Topological Descriptors and Structural Property of the Generalized Sierpiński Networks
    Jia-Bao Liu
    Jing Zhao
    Hailang He
    Zehui Shao
    [J]. Journal of Statistical Physics, 2019, 177 : 1131 - 1147
  • [4] The 2-Rainbow Domination of Sierpiński Graphs and Extended Sierpiński Graphs
    Jia-Jie Liu
    Shun-Chieh Chang
    Chiou-Jiun Lin
    [J]. Theory of Computing Systems, 2017, 61 : 893 - 906
  • [5] Generalized Power Domination: Propagation Radius and Sierpiński Graphs
    Paul Dorbec
    Sandi Klavžar
    [J]. Acta Applicandae Mathematicae, 2014, 134 : 75 - 86
  • [6] On the Randic Index of Polymeric Networks Modelled by Generalized Sierpinski Graphs
    Rodriguez-Velazquez, Juan A.
    Tomas-Andreu, Jessica
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 74 (01) : 145 - 160
  • [7] Resolvability and Convexity Properties in the Sierpiński Product of Graphs
    Michael A. Henning
    Sandi Klavžar
    Ismael G. Yero
    [J]. Mediterranean Journal of Mathematics, 2024, 21
  • [8] The Sierpi?ski product of graphs
    Kovic, Jurij
    Pisanski, Tomaz
    Zemljic, Sara Sabrina
    Zitnik, Arjana
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
  • [9] GENERALIZED SIERPIŃSKI NUMBERS
    Filaseta, Michael
    Groth, Robert
    Luckner, Thomas
    [J]. COLLOQUIUM MATHEMATICUM, 2023,
  • [10] SOME TOPOLOGICAL PROPERTIES AND APPLICATIONS OF EQUILATERAL SIERPIŃSKI RELATIVES
    Li, Xiaohan
    Liang, Xiangyu
    Zeng, Cheng
    Xue, Yumei
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,