Concerning the Vector-Valued Fractal Interpolation Functions on the Sierpiński Gasket

被引:0
|
作者
M. A. Navascués
S. Verma
P. Viswanathan
机构
[1] Universidad de Zaragoza,Departamento de Matemática Aplicada, Escuela de Ingeniería y Arquitectura
[2] Indian Institute of Technology Delhi,Department of Mathematics
[3] IIIT Allahabad,Department of Applied Sciences
来源
关键词
Fractal interpolation function; Sierpiński gasket; Hölder continuity; Hausdorff dimension; fractal operator; 28A80; 41A30;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is concerned with the study of vector-valued interpolation functions on the Sierpiński gasket by certain classes of fractal functions. This extends the known results on the real-valued and vector-valued fractal interpolation functions on a compact interval in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} and the real-valued fractal interpolation on the Sierpiński gasket. We study the smoothness property of the vector-valued fractal interpolants on the Sierpiński gasket. A few elementary properties of the fractal approximants and the fractal operator that emerge in connection with the vector-valued fractal interpolation on the Sierpiński gasket are indicated. Some constrained approximation aspects of the vector-valued fractal interpolation function on the Sierpiński gasket are pointed out.
引用
收藏
相关论文
共 50 条
  • [1] Concerning the Vector-Valued Fractal Interpolation Functions on the Sierpinski Gasket
    Navascues, M. A.
    Verma, S.
    Viswanathan, P.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [2] Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket
    Manuj Verma
    Amit Priyadarshi
    Saurabh Verma
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 1294 - 1325
  • [3] Harmonic analysis on the Sierpiński gasket and singular functions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    [J]. Acta Mathematica Hungarica, 2014, 143 : 58 - 74
  • [4] Interpolation of vector-valued real analytic functions
    Bonet, J
    Domanski, P
    Vogt, D
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 407 - 420
  • [5] Vector-valued fractal functions: Fractal dimension and fractional calculus
    Verma, Manuj
    Priyadarshi, Amit
    Verma, Saurabh
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (04): : 830 - 853
  • [6] Interpolation by vector-valued analytic functions, with applications to controllability
    Jacob, Birgit
    Partington, Jonathan R.
    Pott, Sandra
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) : 517 - 549
  • [7] Hidden variable vector valued fractal interpolation functions
    Bouboulis, P
    Dalla, L
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (03) : 227 - 232
  • [8] A remark about the interpolation of spaces of continuous, vector-valued functions
    Bu, SQ
    Chill, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) : 246 - 250
  • [9] Fractal dimension of Katugampola fractional integral of vector-valued functions
    Pandey, Megha
    Som, Tanmoy
    Verma, Saurabh
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3807 - 3814
  • [10] Fractal dimension of Katugampola fractional integral of vector-valued functions
    Megha Pandey
    Tanmoy Som
    Saurabh Verma
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3807 - 3814