Geodesics Toward Corners in First Passage Percolation

被引:0
|
作者
Kenneth S. Alexander
Quentin Berger
机构
[1] University of Southern California,Department of Mathematics
[2] Sorbonne Université,Laboratoire de Probabilités, Statistique et Modélisation
来源
关键词
Stationary first passage percolation; Geodesics; Limit shape;
D O I
暂无
中图分类号
学科分类号
摘要
For stationary first passage percolation in two dimensions, the existence and uniqueness of semi-infinite geodesics directed in particular directions or sectors has been considered by Damron and Hanson (Commun Math Phys 325(3):917–963, 2014), Ahlberg and Hoffman (Random coalescing geodesics in first-passage percolation, arXiv:1609.02447 [math.PR]), and others. However the main results do not cover geodesics in the direction of corners of the limit shape B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document}, where two facets meet. We construct an example with the following properties: (i) the limiting shape is an octagon, (ii) semi-infinite geodesics exist only in the four axis directions, and (iii) in each axis direction there are multiple such geodesics. Consequently, the set of points of ∂B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathcal {B}$$\end{document} which are in the direction of some geodesic does not have all of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} as its convex hull.
引用
收藏
页码:1029 / 1056
页数:27
相关论文
共 50 条
  • [31] Bigeodesics in First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 753 - 776
  • [32] First Passage Percolation with Queried Hints
    Karntikoon, Kritkorn
    Shen, Yiheng
    Gollapudi, Sreenivas
    Kollias, Kostas
    Schild, Aaron
    Sinop, Ali
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [33] Busemann functions, geodesics, and the competition interface for directed last-passage percolation
    Rassoul-Agha, Firas
    RANDOM GROWTH MODELS, 2018, 75 : 95 - 132
  • [34] SMALL DEVIATION ESTIMATES AND SMALL BALL PROBABILITIES FOR GEODESICS IN LAST PASSAGE PERCOLATION
    Basu, Riddhipratim
    Bhatia, Manan
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 264 (01) : 37 - 96
  • [35] Geometry of geodesics through Busemann measures in directed last-passage percolation
    Janjigian, Christopher
    Rassoul-Agha, Firas
    Seppalainen, Timo
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (07) : 1246 - 2639
  • [36] Lower Bound for Large Local Transversal Fluctuations of Geodesics in Last Passage Percolation
    Agarwal, Pranay
    JOURNAL OF THEORETICAL PROBABILITY, 2025, 38 (01)
  • [37] Euclidean models of first-passage percolation
    C. Douglas Howard
    Charles M. Newman
    Probability Theory and Related Fields, 1997, 108 : 153 - 170
  • [38] Euclidean models of first-passage percolation
    Howard, CD
    Newman, CM
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 153 - 170
  • [39] The divergence of fluctuations for shape in first passage percolation
    Yu Zhang
    Probability Theory and Related Fields, 2006, 136 : 298 - 320
  • [40] Baire categorical aspects of first passage percolation
    B. Maga
    Acta Mathematica Hungarica, 2018, 156 : 145 - 171