Euclidean models of first-passage percolation

被引:60
|
作者
Howard, CD [1 ]
Newman, CM [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
first-passage percolation; Poisson process; Voronoi tesselation; shape theorem; geodesic;
D O I
10.1007/s004400050105
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new family of first-passage percolation (FPP) models in the context of Poisson-Voronoi tesselations of R-d. Compared to standard FPP on Z(d), these models have some technical complications but also have the advantage of statistical isotropy. We prove two almost sure results: a shape theorem (where isotropy implies an exact Euclidean ball for the asymptotic shape) and nonexistence of certain doubly infinite geodesics (where isotropy yields a stronger result than in standard FPP).
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
  • [1] Euclidean models of first-passage percolation
    C. Douglas Howard
    Charles M. Newman
    [J]. Probability Theory and Related Fields, 1997, 108 : 153 - 170
  • [2] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [3] Sublinear variance in Euclidean first-passage percolation
    Bernstein, Megan
    Damron, Michael
    Greenwood, Torin
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5060 - 5099
  • [4] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    [J]. BERNOULLI, 2022, 28 (01) : 255 - 276
  • [5] Geodesics and spanning trees for euclidean first-passage percolation
    Howard, CD
    Newman, CM
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02): : 577 - 623
  • [6] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [7] First-passage percolation
    Kesten, H
    [J]. FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 93 - 143
  • [8] FIRST-PASSAGE PERCOLATION
    HAMMERSLEY, JM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1966, 28 (03) : 491 - +
  • [9] Bigeodesics in First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 753 - 776
  • [10] Monotonicity in first-passage percolation
    Gouere, Jean-Baptiste
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 565 - 569