Euclidean models of first-passage percolation

被引:0
|
作者
C. Douglas Howard
Charles M. Newman
机构
[1] Polytechnic University,
[2] 6 Metrotech Center,undefined
[3] Brooklyn,undefined
[4] NY 11201,undefined
[5] USA (e-mail: howard@math.poly.edu),undefined
[6] Courant Institute of Mathematical Sciences,undefined
[7] New York University,undefined
[8] 251 Mercer Street,undefined
[9] New York,undefined
[10] NY 10012,undefined
[11] USA (e-mail: newman@cims.nyu.edu),undefined
来源
关键词
Key words and phrases: First-passage percolation; Poisson process; Voronoi tesselation; shape theorem; geodesic; Mathematics Subject Classification (1991): Primary 60K35; 60G55; secondary 82D30.;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new family of first-passage percolation (FPP) models in the context of Poisson-Voronoi tesselations of ℝd. Compared to standard FPP on ℤd, these models have some technical complications but also have the advantage of statistical isotropy. We prove two almost sure results: a shape theorem (where isotropy implies an exact Euclidean ball for the asymptotic shape) and nonexistence of certain doubly infinite geodesics (where isotropy yields a stronger result than in standard FPP).
引用
收藏
页码:153 / 170
页数:17
相关论文
共 50 条
  • [1] Euclidean models of first-passage percolation
    Howard, CD
    Newman, CM
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 153 - 170
  • [2] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [3] Sublinear variance in Euclidean first-passage percolation
    Bernstein, Megan
    Damron, Michael
    Greenwood, Torin
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5060 - 5099
  • [4] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    [J]. BERNOULLI, 2022, 28 (01) : 255 - 276
  • [5] Geodesics and spanning trees for euclidean first-passage percolation
    Howard, CD
    Newman, CM
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02): : 577 - 623
  • [6] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [7] First-passage percolation
    Kesten, H
    [J]. FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 93 - 143
  • [8] FIRST-PASSAGE PERCOLATION
    HAMMERSLEY, JM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1966, 28 (03) : 491 - +
  • [9] Bigeodesics in First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 753 - 776
  • [10] Monotonicity in first-passage percolation
    Gouere, Jean-Baptiste
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 565 - 569