Geodesics Toward Corners in First Passage Percolation

被引:0
|
作者
Kenneth S. Alexander
Quentin Berger
机构
[1] University of Southern California,Department of Mathematics
[2] Sorbonne Université,Laboratoire de Probabilités, Statistique et Modélisation
来源
关键词
Stationary first passage percolation; Geodesics; Limit shape;
D O I
暂无
中图分类号
学科分类号
摘要
For stationary first passage percolation in two dimensions, the existence and uniqueness of semi-infinite geodesics directed in particular directions or sectors has been considered by Damron and Hanson (Commun Math Phys 325(3):917–963, 2014), Ahlberg and Hoffman (Random coalescing geodesics in first-passage percolation, arXiv:1609.02447 [math.PR]), and others. However the main results do not cover geodesics in the direction of corners of the limit shape B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document}, where two facets meet. We construct an example with the following properties: (i) the limiting shape is an octagon, (ii) semi-infinite geodesics exist only in the four axis directions, and (iii) in each axis direction there are multiple such geodesics. Consequently, the set of points of ∂B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathcal {B}$$\end{document} which are in the direction of some geodesic does not have all of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} as its convex hull.
引用
收藏
页码:1029 / 1056
页数:27
相关论文
共 50 条
  • [21] Optimal exponent for coalescence of finite geodesics in exponential last passage percolation
    Zhang, Lingfu
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 14
  • [22] Monotonicity in first-passage percolation
    Gouere, Jean-Baptiste
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 565 - 569
  • [23] Superdiffusivity in first-passage percolation
    Licea, C
    Newman, CM
    Piza, MST
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (04) : 559 - 591
  • [24] Bigeodesics in First-Passage Percolation
    Michael Damron
    Jack Hanson
    Communications in Mathematical Physics, 2017, 349 : 753 - 776
  • [25] Singularity points for first passage percolation
    Yukich, JE
    Zhang, Y
    ANNALS OF PROBABILITY, 2006, 34 (02): : 577 - 592
  • [26] First Passage Percolation on : A Simulation Study
    Alm, Sven Erick
    Deijfen, Maria
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (03) : 657 - 678
  • [27] First passage percolation on hyperbolic groups
    Basu, Riddhipratim
    Mahan, Mj
    ADVANCES IN MATHEMATICS, 2022, 408
  • [28] Fluctuations in first-passage percolation
    Sosoe, Philippe
    RANDOM GROWTH MODELS, 2018, 75 : 69 - 93
  • [29] Inhomogeneous first-passage percolation
    Ahlberg, Daniel
    Damron, Michael
    Sidoravicius, Vladas
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [30] First Passage Percolation and Escape Strategies
    Andjel, Enrique D.
    Vares, Maria E.
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (03) : 414 - 423