First Passage Percolation and Escape Strategies

被引:2
|
作者
Andjel, Enrique D. [1 ]
Vares, Maria E. [2 ]
机构
[1] Univ Aix Marseille, LATP URA CNRS 225, F-13453 Marseille 13, France
[2] Univ Fed Rio de Janeiro, Inst Matemat, DME, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
first passage percolation; escape strategy; geodesic; 1ST-PASSAGE PERCOLATION; TIME CONSTANT;
D O I
10.1002/rsa.20548
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Consider first passage percolation on Z(d) with passage times given by i.i.d. random variables with common distribution F. Let t(pi)(u,v) be the time from u to v for a path pi and t(u,v) the minimal time among all paths from u to v. We ask whether or not there exist points x,y is an element of Z(d) and a semi-infinite path pi = (y(0) = y,y1, ...) such that t(pi) (y, y(n+1)) < t(x,y(n)) for all n. Necessary and sufficient conditions on F are given for this to occur. When the support of F is unbounded, we also obtain results on the number of edges with large passage time used by geodesics. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 50 条
  • [1] First passage percolation with recovery
    Candellero, Elisabetta
    Garcia-Sanchez, Tom
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 179
  • [2] FIRST-PASSAGE PERCOLATION
    HAMMERSLEY, JM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1966, 28 (03) : 491 - +
  • [3] GEODESICS IN FIRST PASSAGE PERCOLATION
    Hoffman, Christopher
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (05): : 1944 - 1969
  • [4] First-passage percolation
    Kesten, H
    FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 93 - 143
  • [5] Monotonicity in first-passage percolation
    Gouere, Jean-Baptiste
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 565 - 569
  • [6] Superdiffusivity in first-passage percolation
    Licea, C
    Newman, CM
    Piza, MST
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (04) : 559 - 591
  • [7] Bigeodesics in First-Passage Percolation
    Michael Damron
    Jack Hanson
    Communications in Mathematical Physics, 2017, 349 : 753 - 776
  • [8] Singularity points for first passage percolation
    Yukich, JE
    Zhang, Y
    ANNALS OF PROBABILITY, 2006, 34 (02): : 577 - 592
  • [9] First Passage Percolation on : A Simulation Study
    Alm, Sven Erick
    Deijfen, Maria
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (03) : 657 - 678
  • [10] First passage percolation on hyperbolic groups
    Basu, Riddhipratim
    Mahan, Mj
    ADVANCES IN MATHEMATICS, 2022, 408