First Passage Percolation and Escape Strategies

被引:2
|
作者
Andjel, Enrique D. [1 ]
Vares, Maria E. [2 ]
机构
[1] Univ Aix Marseille, LATP URA CNRS 225, F-13453 Marseille 13, France
[2] Univ Fed Rio de Janeiro, Inst Matemat, DME, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
first passage percolation; escape strategy; geodesic; 1ST-PASSAGE PERCOLATION; TIME CONSTANT;
D O I
10.1002/rsa.20548
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Consider first passage percolation on Z(d) with passage times given by i.i.d. random variables with common distribution F. Let t(pi)(u,v) be the time from u to v for a path pi and t(u,v) the minimal time among all paths from u to v. We ask whether or not there exist points x,y is an element of Z(d) and a semi-infinite path pi = (y(0) = y,y1, ...) such that t(pi) (y, y(n+1)) < t(x,y(n)) for all n. Necessary and sufficient conditions on F are given for this to occur. When the support of F is unbounded, we also obtain results on the number of edges with large passage time used by geodesics. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 50 条
  • [41] The time constant vanishes only on the percolation cone in directed first passage percolation
    Zhang, Yu
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 2264 - 2286
  • [42] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Auffinger, Antonio
    Damron, Michael
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) : 193 - 227
  • [43] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [44] Short Paths for First Passage Percolation on the Complete Graph
    Maren Eckhoff
    Jesse Goodman
    Remco van der Hofstad
    Francesca R. Nardi
    Journal of Statistical Physics, 2013, 151 : 1056 - 1088
  • [45] Weak LQG metrics and Liouville first passage percolation
    Julien Dubédat
    Hugo Falconet
    Ewain Gwynne
    Joshua Pfeffer
    Xin Sun
    Probability Theory and Related Fields, 2020, 178 : 369 - 436
  • [46] Size of a minimal cutset in supercritical first passage percolation
    Dembin, Barbara
    Theret, Marie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1419 - 1439
  • [47] First-passage percolation on random simple triangulations
    Stufler, Benedikt
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 129 - 178
  • [48] The distance exponent for Liouville first passage percolation is positive
    Jian Ding
    Ewain Gwynne
    Avelio Sepúlveda
    Probability Theory and Related Fields, 2021, 181 : 1035 - 1051
  • [49] Comparison of discrete and continuum Liouville first passage percolation
    Ang, Morris
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [50] Oriented first passage percolation in the mean field limit
    Kistler, Nicola
    Schertzer, Adrien
    Schmidt, Marius A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2020, 34 (02) : 414 - 425