First Passage Percolation and Escape Strategies

被引:2
|
作者
Andjel, Enrique D. [1 ]
Vares, Maria E. [2 ]
机构
[1] Univ Aix Marseille, LATP URA CNRS 225, F-13453 Marseille 13, France
[2] Univ Fed Rio de Janeiro, Inst Matemat, DME, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
first passage percolation; escape strategy; geodesic; 1ST-PASSAGE PERCOLATION; TIME CONSTANT;
D O I
10.1002/rsa.20548
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Consider first passage percolation on Z(d) with passage times given by i.i.d. random variables with common distribution F. Let t(pi)(u,v) be the time from u to v for a path pi and t(u,v) the minimal time among all paths from u to v. We ask whether or not there exist points x,y is an element of Z(d) and a semi-infinite path pi = (y(0) = y,y1, ...) such that t(pi) (y, y(n+1)) < t(x,y(n)) for all n. Necessary and sufficient conditions on F are given for this to occur. When the support of F is unbounded, we also obtain results on the number of edges with large passage time used by geodesics. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 50 条
  • [31] A note on anisotropic first-passage percolation
    Takei, Masato
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (04): : 903 - 912
  • [32] Geodesics Toward Corners in First Passage Percolation
    Kenneth S. Alexander
    Quentin Berger
    Journal of Statistical Physics, 2018, 172 : 1029 - 1056
  • [33] Subdiffusive concentration in first-passage percolation
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 27
  • [34] First passage percolation on nilpotent Cayley graphs
    Benjamini, Itai
    Tessera, Romain
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 20
  • [35] Geodesics Toward Corners in First Passage Percolation
    Alexander, Kenneth S.
    Berger, Quentin
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (04) : 1029 - 1056
  • [36] Asymptotic shapes for stationary first passage percolation
    Haggstrom, O
    Meester, R
    ANNALS OF PROBABILITY, 1995, 23 (04): : 1511 - 1522
  • [37] First passage percolation in hostile environment is not monotone
    Candellero, Elisabetta
    Stauffer, Alexandre
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [38] Weak shape theorem in first passage percolation with infinite passage times
    Cerf, Raphael
    Theret, Marie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1351 - 1381
  • [39] First passage time and first passage percolation models for analysing network resilience and effective strategies in strategic information warfare research: A brief survey and perspective
    Ma, Zhanshan
    International Journal of Information and Computer Security, 2013, 5 (04) : 334 - 358
  • [40] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Antonio Auffinger
    Michael Damron
    Probability Theory and Related Fields, 2013, 156 : 193 - 227