Geodesics Toward Corners in First Passage Percolation

被引:0
|
作者
Kenneth S. Alexander
Quentin Berger
机构
[1] University of Southern California,Department of Mathematics
[2] Sorbonne Université,Laboratoire de Probabilités, Statistique et Modélisation
来源
关键词
Stationary first passage percolation; Geodesics; Limit shape;
D O I
暂无
中图分类号
学科分类号
摘要
For stationary first passage percolation in two dimensions, the existence and uniqueness of semi-infinite geodesics directed in particular directions or sectors has been considered by Damron and Hanson (Commun Math Phys 325(3):917–963, 2014), Ahlberg and Hoffman (Random coalescing geodesics in first-passage percolation, arXiv:1609.02447 [math.PR]), and others. However the main results do not cover geodesics in the direction of corners of the limit shape B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document}, where two facets meet. We construct an example with the following properties: (i) the limiting shape is an octagon, (ii) semi-infinite geodesics exist only in the four axis directions, and (iii) in each axis direction there are multiple such geodesics. Consequently, the set of points of ∂B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathcal {B}$$\end{document} which are in the direction of some geodesic does not have all of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} as its convex hull.
引用
收藏
页码:1029 / 1056
页数:27
相关论文
共 50 条
  • [1] Geodesics Toward Corners in First Passage Percolation
    Alexander, Kenneth S.
    Berger, Quentin
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (04) : 1029 - 1056
  • [2] GEODESICS IN FIRST PASSAGE PERCOLATION
    Hoffman, Christopher
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (05): : 1944 - 1969
  • [3] Geodesics and spanning trees for euclidean first-passage percolation
    Howard, CD
    Newman, CM
    ANNALS OF PROBABILITY, 2001, 29 (02): : 577 - 623
  • [4] Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension
    Alexander, Kenneth S.
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [5] Geodesics in first-passage percolation cross any pattern
    Jacquet, Antonin
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [6] Geodesics in two-dimensional first-passage percolation
    Licea, C
    Newman, CM
    ANNALS OF PROBABILITY, 1996, 24 (01): : 399 - 410
  • [7] Absence of geodesics in first-passage percolation on a half-plane
    Wehr, J
    Woo, J
    ANNALS OF PROBABILITY, 1998, 26 (01): : 358 - 367
  • [8] LIMITING GEODESICS FOR FIRST-PASSAGE PERCOLATION ON SUBSETS OF Z2
    Auffinger, Antonio
    Damron, Michael
    Hanson, Jack
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (01): : 373 - 405
  • [9] COALESCENCE OF GEODESICS AND THE BKS MIDPOINT PROBLEM IN PLANAR FIRST-PASSAGE PERCOLATION
    Dembin, Barbara
    Elboim, Dor
    Peled, Ron
    arXiv, 2022,
  • [10] Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation
    Barbara Dembin
    Dor Elboim
    Ron Peled
    Geometric and Functional Analysis, 2024, 34 : 733 - 797