Absence of geodesics in first-passage percolation on a half-plane

被引:0
|
作者
Wehr, J [1 ]
Woo, J
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
来源
ANNALS OF PROBABILITY | 1998年 / 26卷 / 01期
关键词
first-passage percolation; time-minimizing paths; infinite geodesics; ergodicity; large deviation bounds;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An H-geodesic is a doubly infinite path which locally minimizes the passage time in the i.i.d. first passage percolation model on a half-plane H. Under the assumption that the bond passage times are continuously distributed with a finite mean, we prove that, with probability 1, H-geodesics do not exist. As a corollary we show that, with probability 1, any geodesic in the analogous model on the whole plane Z(2) has to intersect all straight lines with rational slopes.
引用
收藏
页码:358 / 367
页数:10
相关论文
共 50 条
  • [1] Geodesics and spanning trees for euclidean first-passage percolation
    Howard, CD
    Newman, CM
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02): : 577 - 623
  • [2] Geodesics in first-passage percolation cross any pattern
    Jacquet, Antonin
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [3] Geodesics in two-dimensional first-passage percolation
    Licea, C
    Newman, CM
    [J]. ANNALS OF PROBABILITY, 1996, 24 (01): : 399 - 410
  • [4] First-passage percolation
    Kesten, H
    [J]. FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 93 - 143
  • [5] Infinite geodesics, asymptotic directions, and Busemann functions in first-passage percolation
    Hanson, Jack
    [J]. RANDOM GROWTH MODELS, 2018, 75 : 39 - 67
  • [6] Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation
    Dembin, Barbara
    Elboim, Dor
    Peled, Ron
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (03) : 733 - 797
  • [7] Coalescence of Geodesics and the BKS Midpoint Problem in Planar First-Passage Percolation
    Barbara Dembin
    Dor Elboim
    Ron Peled
    [J]. Geometric and Functional Analysis, 2024, 34 : 733 - 797
  • [8] FIRST-PASSAGE PERCOLATION
    HAMMERSLEY, JM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1966, 28 (03) : 491 - +
  • [9] LIMITING GEODESICS FOR FIRST-PASSAGE PERCOLATION ON SUBSETS OF Z2
    Auffinger, Antonio
    Damron, Michael
    Hanson, Jack
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (01): : 373 - 405
  • [10] GEODESICS IN FIRST PASSAGE PERCOLATION
    Hoffman, Christopher
    [J]. ANNALS OF APPLIED PROBABILITY, 2008, 18 (05): : 1944 - 1969