Geodesics Toward Corners in First Passage Percolation

被引:0
|
作者
Kenneth S. Alexander
Quentin Berger
机构
[1] University of Southern California,Department of Mathematics
[2] Sorbonne Université,Laboratoire de Probabilités, Statistique et Modélisation
来源
关键词
Stationary first passage percolation; Geodesics; Limit shape;
D O I
暂无
中图分类号
学科分类号
摘要
For stationary first passage percolation in two dimensions, the existence and uniqueness of semi-infinite geodesics directed in particular directions or sectors has been considered by Damron and Hanson (Commun Math Phys 325(3):917–963, 2014), Ahlberg and Hoffman (Random coalescing geodesics in first-passage percolation, arXiv:1609.02447 [math.PR]), and others. However the main results do not cover geodesics in the direction of corners of the limit shape B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document}, where two facets meet. We construct an example with the following properties: (i) the limiting shape is an octagon, (ii) semi-infinite geodesics exist only in the four axis directions, and (iii) in each axis direction there are multiple such geodesics. Consequently, the set of points of ∂B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathcal {B}$$\end{document} which are in the direction of some geodesic does not have all of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} as its convex hull.
引用
收藏
页码:1029 / 1056
页数:27
相关论文
共 50 条
  • [41] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237
  • [42] The divergence of fluctuations for shape in first passage percolation
    Zhang, Yu
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (02) : 298 - 320
  • [43] Baire categorical aspects of first passage percolation
    Maga, B.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 145 - 171
  • [44] Tightness of supercritical Liouville first passage percolation
    Ding, Jian
    Gwynne, Ewain
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (10) : 3833 - 3911
  • [45] Transversal fluctuations for a first passage percolation model
    Bakhtin, Yuri
    Wu, Wei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 1042 - 1060
  • [46] FIRST PASSAGE PERCOLATION ON INHOMOGENEOUS RANDOM GRAPHS
    Kolossvary, Istvan
    Komjathy, Julia
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) : 589 - 610
  • [47] THE FRONT OF THE EPIDEMIC SPREAD AND FIRST PASSAGE PERCOLATION
    Bhamidi, Shankar
    van der Hofstad, Remco
    Komjathy, Julia
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (0A) : 101 - 121
  • [48] First passage percolation for weakly correlated fields
    Dewan, Vivek
    Gayet, Damien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 345 - 367
  • [49] THE SIZE OF THE BOUNDARY IN FIRST-PASSAGE PERCOLATION
    Damron, Michael
    Hanson, Jack
    Lam, Wai-Kit
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 3184 - 3214
  • [50] Large deviations in first-passage percolation
    Chow, Y
    Zhang, Y
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1601 - 1614