Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means

被引:0
|
作者
Hui-Zuo Xu
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Wenzhou University of Technology,School of Data Science and Artificial Intelligence
[2] Huzhou Vocational and Technical College,School of Continuing Education
[3] Huzhou Radio and Television University,Institute for Advanced Study Honoring Chen Jian Gong
[4] Hangzhou Normal University,Department of Mathematics
[5] Huzhou University,undefined
关键词
Arc lemniscate function; Lemniscatic mean; Geometric mean; Quadratic mean; One-parameter mean; 33E05; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we present the best possible parameters α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document}, α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document}, α3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _3$$\end{document}, α4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _4$$\end{document}, β1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1$$\end{document}, β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _2$$\end{document}, β3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _3$$\end{document} and β4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _4$$\end{document} on the interval (0, 1) such that the double inequalities Gα1(a,b)<LMGAa,b<Gβ1(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _1}}}(a,b)< L{M_{GA}}\left( {a,b} \right) < {G_{{\beta _1}}}(a,b)$$\end{document}, Gα2(a,b)<LMAGa,b<Gβ2(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _2}}}(a,b)< L{M_{AG}}\left( {a,b} \right) < {G_{{\beta _2}}}(a,b)$$\end{document}, Qα3(a,b)<LMAQa,b<Qβ3(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _3}}}(a,b)< L{M_{AQ}}\left( {a,b} \right) < {Q_{{\beta _3}}}(a,b)$$\end{document} and Qα4(a,b)<LMQAa,b<Qβ4(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _4}}}(a,b)< L{M_{QA}}\left( {a,b} \right) < {Q_{{\beta _4}}}(a,b)$$\end{document} hold for a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b > 0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne b$$\end{document}, where Gp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_p}(a,b)$$\end{document} and Qp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_p}(a,b)$$\end{document} are respectively the one-parameter geometric and quadratic means, LMGA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{GA}}(a,b)$$\end{document}, LMAG(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AG}}(a,b)$$\end{document}, LMAQ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AQ}}(a,b)$$\end{document} and LMQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{QA}}(a,b)$$\end{document} are four lemniscatic means of a and b. As applications, some new bounds for the arc lemniscate functions are given.
引用
下载
收藏
相关论文
共 50 条
  • [1] Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means
    Xu, Hui-Zuo
    Qian, Wei-Mao
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [2] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [3] Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means
    Bo Wang
    Chen-Lan Luo
    Shi-Hui Li
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [4] Sharp One-Parameter Mean Bounds for Yang Mean
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [5] Sharp Power Mean Bounds for the One-Parameter Harmonic Mean
    Chu, Yu-Ming
    Wu, Li-Min
    Song, Ying-Qing
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [6] Optimal one-parameter mean bounds for the convex combination of arithmetic and geometric means
    Xia, Weifeng
    Hou, Shouwei
    Wang, Gendi
    Chu, Yuming
    JOURNAL OF APPLIED ANALYSIS, 2012, 18 (02) : 197 - 207
  • [7] Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means
    Chu, Hong-Hu
    Qian, Wei-Mao
    Chu, Yu-Ming
    Song, Ying-Qing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3424 - 3432
  • [8] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Zhi-Hua Shao
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014
  • [9] Sharp bounds for Neuman means in terms of one-parameter family of bivariate means
    Shao, Zhi-Hua
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [10] Optimal Bounds for Seiffert Mean in terms of One-Parameter Means
    Hu, Hua-Nan
    Tu, Guo-Yan
    Chu, Yu-Ming
    JOURNAL OF APPLIED MATHEMATICS, 2012,