Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means

被引:0
|
作者
Hui-Zuo Xu
Wei-Mao Qian
Yu-Ming Chu
机构
[1] Wenzhou University of Technology,School of Data Science and Artificial Intelligence
[2] Huzhou Vocational and Technical College,School of Continuing Education
[3] Huzhou Radio and Television University,Institute for Advanced Study Honoring Chen Jian Gong
[4] Hangzhou Normal University,Department of Mathematics
[5] Huzhou University,undefined
关键词
Arc lemniscate function; Lemniscatic mean; Geometric mean; Quadratic mean; One-parameter mean; 33E05; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we present the best possible parameters α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document}, α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document}, α3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _3$$\end{document}, α4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _4$$\end{document}, β1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1$$\end{document}, β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _2$$\end{document}, β3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _3$$\end{document} and β4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _4$$\end{document} on the interval (0, 1) such that the double inequalities Gα1(a,b)<LMGAa,b<Gβ1(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _1}}}(a,b)< L{M_{GA}}\left( {a,b} \right) < {G_{{\beta _1}}}(a,b)$$\end{document}, Gα2(a,b)<LMAGa,b<Gβ2(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{{\alpha _2}}}(a,b)< L{M_{AG}}\left( {a,b} \right) < {G_{{\beta _2}}}(a,b)$$\end{document}, Qα3(a,b)<LMAQa,b<Qβ3(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _3}}}(a,b)< L{M_{AQ}}\left( {a,b} \right) < {Q_{{\beta _3}}}(a,b)$$\end{document} and Qα4(a,b)<LMQAa,b<Qβ4(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{{\alpha _4}}}(a,b)< L{M_{QA}}\left( {a,b} \right) < {Q_{{\beta _4}}}(a,b)$$\end{document} hold for a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b > 0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ne b$$\end{document}, where Gp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_p}(a,b)$$\end{document} and Qp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_p}(a,b)$$\end{document} are respectively the one-parameter geometric and quadratic means, LMGA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{GA}}(a,b)$$\end{document}, LMAG(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AG}}(a,b)$$\end{document}, LMAQ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{AQ}}(a,b)$$\end{document} and LMQA(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L{M_{QA}}(a,b)$$\end{document} are four lemniscatic means of a and b. As applications, some new bounds for the arc lemniscate functions are given.
引用
下载
收藏
相关论文
共 50 条
  • [31] Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
    Wei-Mao Qian
    Yu-Ming Chu
    Xiao-Hui Zhang
    Journal of Inequalities and Applications, 2015
  • [32] SHARP BOUNDS FOR THE TOADER-QI MEAN IN TERMS OF HARMONIC AND GEOMETRIC MEANS
    Qian, Wei-Mao
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 121 - 127
  • [33] Several Optimal Bounds for Some Means Derived From the Lemniscatic Mean
    Wang, Xueling
    Yin, Li
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (02) : 195 - 205
  • [34] Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means
    Yang, Zhen-Hang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 446 - 461
  • [35] SHARP BOUNDS FOR THE TOADER MEAN OF ORDER 3 IN TERMS OF ARITHMETIC, QUADRATIC AND CONTRAHARMONIC MEANS
    Chu, Hong-Hu
    Zhao, Tie-Hong
    Chu, Yu-Ming
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1097 - 1112
  • [36] Sharp bounds for the arithmetic-geometric mean
    Yang, Zhen-Hang
    Song, Ying-Qing
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [37] Sharp bounds for the arithmetic-geometric mean
    Zhen-Hang Yang
    Ying-Qing Song
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014
  • [38] BOUNDING THE CONVEX COMBINATION OF ARITHMETIC AND INTEGRAL MEANS IN TERMS OF ONE-PARAMETER HARMONIC AND GEOMETRIC MEANS
    Qian, Wei-Mao
    Zhang, Wen
    Chu, Yu-Ming
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1157 - 1166
  • [39] On one-parameter family of bivariate means
    Neuman, Edward
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 191 - 197
  • [40] On one-parameter family of bivariate means
    Edward Neuman
    Aequationes mathematicae, 2012, 83 : 191 - 197